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Japan and European Union will soon experience appreciable decreases in their populations due to
persistently low total fertility rates (TFR) below replacement level (2.1 child per woman). In the
United States, where TFR has also declined, there are ethnic differences. Caucasians have rates
below replacement, while TFRs among African-Americans and Hispanics are higher. We review
possible links between TFR and trends in a range of male reproductive problems, including
testicular cancer, disorders of sex development, cryptorchidism, hypospadias, low testosterone
levels, poor semen quality, childlessness, changed sex ratio, and increasing demand for assisted
reproductive techniques. We present evidence that several adult male reproductive problems arise
in utero and are signs of testicular dysgenesis syndrome (TDS). Although TDS might result from
genetic mutations, recent evidence suggests that it most often is related to environmental expo-
sures of the fetal testis. However, environmental factors can also affect the adult endocrine
system. Based on our review of genetic and environmental factors, we conclude that environmental
exposures arising from modern lifestyle, rather than genetics, are the most important factors in
the observed trends. These environmental factors might act either directly or via epigenetic
mechanisms. In the latter case, the effects of exposures might have an impact for several
generations post-exposure. In conclusion, there is an urgent need to prioritize research in repro-
ductive physiology and pathophysiology, particularly in highly industrialized countries facing decreas-
ing populations. We highlight a number of topics that need attention by researchers in human
physiology, pathophysiology, environmental health sciences, and demography.
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I. INTRODUCTION

During the 20th century, populations of industrialized
countries all over the world have experienced a decline in
total fertility rates (TFR, average number of live births per

woman) far below 2.1, which is the rate considered neces-
sary to sustain a population size at current numbers. At the
same time a spectacular rise in testicular germ cell cancer
(TGCC) has occurred in all parts of the World. In addition,
other male reproductive problems, of which several are
linked to testicular cancer, including disorders of spermato-
genesis, are widespread and have recently been the focus for
many basic and clinical research projects.

As shown in FIGURE 1, the total fertility rate has fallen
significantly in European Union (EU), Japan, and the United
States (US). Also, Hong Kong and Singapore have for de-
cades had TFR significantly below replacement level (now
between 1.0 and 1.5). Fertility has therefore become a sig-
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nificant political theme (122). Social and economic factors
combined with the advent of effective contraceptive meth-
ods and access to induced abortions have contributed sub-
stantially to decreasing TFR, although the decline in birth
rate started decades before the contraceptive pill and legal
abortion were introduced (FIGURE 2).

Surprisingly little is known about biological factors that
might have changed human fecundity (capacity to conceive)
and thereby influenced the TFR. The lack of knowledge in
this area probably reflects the fact that research into human

fecundity is difficult. Fecundity depends not only on a num-
ber of physiological and pathophysiological factors in both
partners of a couple. Studies on rates of conceptions are also
confounded by social, economic, and psychological factors
that might change over time. In addition, TFR can be a poor
marker of fecundity as it can be skewed by multiple factors,
including induced abortion rates, availability of contracep-
tion, desire for pregnancy, and access to assisted reproduc-
tion, for example, before 1990 several Eastern European
countries had higher abortion rates than birth rates. Total
pregnancy rate, which includes both live births and induced
abortions, might be more informative of changes in fecun-
dity in a population than TFR (230).

The aim of this review is to analyze some global trends in
male reproductive health problems and their potential ef-
fects on male fecundity as well as the possible etiological
roles of environmental, epigenetic, and genetic factors for
these trends. Besides testicular cancer, we shall review re-
cent studies on infertility, semen quality, cryptorchidism,
and hypospadias and how these disorders might be interre-
lated with testicular cancer and with each other, through a
testicular dysgenesis syndrome (TDS) (FIGURE 3). We shall
also review trends in sex ratio and the potential roles of
male reproductive disorders for couple fecundity and fertil-
ity rates. Finally, we will present some urgent research needs
within the field of physiology and pathophysiology of male
reproduction.

II. INCIDENCE TRENDS, GENETIC
SUSCEPTIBILITY, AND PATHOGENESIS
OF REPRODUCTIVE DISORDERS

A. Testicular Germ Cell Cancer

The strongest evidence for adverse trends in male reproduc-
tive health comes from epidemiological studies of TGCC,
including both seminoma and nonseminoma (231, 481).
The increase was first noted in developed countries, where
incidence rates have been highest in countries with North-

0

0.5

1

1.5

2

2.5

3

3.5

4
To

ta
l F

er
til

ity
 R

at
e 

(p
er

 w
om

an
)

 

19
60

19
65

19
70

19
75

19
80

19
85

19
90

19
95

20
00

20
05

20
10

European Union
Japan
USA
Replacement level

FIGURE 1. Total Fertility Rates (TFR), European Union, Japan and
United States, 1960–2013. Dotted line represents a fertility rate of
2.1, below which a population cannot be sustained. From the World
Bank: http://databank.worldbank.org/data/views/variableselection/
selectvariables.aspx?source�world-development-indicators.
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FIGURE 2. Total Fertility Rate (TFR), Denmark
1901–2014. From Statistics Denmark: http://www.
statistikbanken.dk/statbank5a/default.asp?w�1600. Dot-
ted line represents a fertility rate of 2.1. Note that a
downwards trend in TFR started long before introduc-
tion of the contraceptive pill in the 1960s. Apparently
the trend was interrupted by the First and Second World
Wars.
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ern European ancestry, including Denmark, Norway, and
New Zealand (341). In the US, the highest incidences have
been found among descendants of Europeans in the Mid-
and North West (269). Interestingly, recent studies have
shown that countries with previously low rates of TGCC,
such as Finland, Italy, and Spain, are now catching up (FIG-
URE 4), while high incidence countries such as Denmark
and Switzerland now report smaller increases or stabiliza-
tion of the high rates (231, 481).

1. Genetic aspects

TGCC has a strong genetic component; brothers and sons
of TGCC patients have significantly higher rates of TGCC
(162). Studies have shown that incidence among Cauca-
sians is much higher than among Afro-Americans living in
the same area, confirming a role of genetic disposition to
TGCC (FIGURE 4). In line with these epidemiological stud-
ies, several recent genome-wide association studies (GWAS)
have identified a number of gene variants that might predis-
pose to TGCC. Interestingly, most of the significantly asso-
ciated genes are functionally linked to gonadal development
and germ cell function, although pathways more typical for
any cancer, for example, chromosome aggregation, micro-
tubule assembly, telomerase function, and DNA repair,
have also been associated with TGCC risk. The strongest
association has been found with the KITLG locus on 12q22
(203, 349), which encodes for the KIT receptor ligand. The
KIT/KITLG signaling pathway is indispensable for germ
cell migration and survival and is highly expressed in testic-

ular germ cell neoplasia in situ (GCNIS) and malignant
TGCC, except somatically differentiated nonseminomas
(347, 402). The significance of KIT/KITLG pathway for the
TGCC risk, both in the sporadic and familial cases, has
been confirmed by subsequent studies in different popula-
tions, and by associations with genes functionally linked to
this pathway, such as SPRY, BAK1, or PDE11A (32, 86,
116, 215, 233, 337).

Among other biologically interesting gene polymorphisms
associated with an increased risk of TGCC, we highlight
here four genes, all encoding for proteins involved in sex
and germ cell development: DMRT1, PRDM14, DAZL,
and HPGDS (77, 204, 215, 367, 432). DMRT1 is a tran-
scription factor needed for sex differentiation and regula-
tion of the onset of germ cell specific meiosis in male and
female germ cells (185, 218, 265). Deletions encompassing
DMRT1 and DMRT2 loci on chromosome 9p have been
found in individuals with gonadoblastoma (244), a germ
cell malignancy associated with disorders of sex develop-
ment and gonadal dysgenesis. On the other hand, amplifi-
cation of the DMRT1 locus has been detected in spermato-
cytic tumor, a germ cell tumor of older men not associated
with GCNIS (247). PRDM14 is involved in germ cell spec-
ification and epigenetic reprogramming (469) and controls
expression of the pluripotency genes POU5F1 (OCT4), and
NANOG, which are expressed in GCNIS and TGCC (248,
345). Involvement in germ cell specification and embryonic
meiosis regulation has also been evidenced for DAZL (206,
237). Of note for the hypothesis linking TGCC and some
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FIGURE 3. The hypothesis of testicular dys-
genesis syndrome (TDS) and signs that might
be linked to it: poor spermatogenesis, testic-
ular cancer, hypospadias, cryptorchidism,
and short ano-genital distance (AGD). The sin-
gle symptoms and combinations thereof are
risk factors for reduced fecundity. [Updated
from Skakkebaek et al. (387).]
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forms of male infertility to a TDS (see FIGURE 6, below),
some DAZL variants and epigenetic promoter changes
(301) have been associated with defective spermatogenesis,
but the reports are inconsistent and might depend on the
ethnic background of the studied cohort (434, 473). The
inconsistent results are likely related to the confounding
effect of a variable copy number of DAZ, a gene function-
ally related to DAZL in postmeiotic germ cells. DAZ copy
number variations within partial AZFc deletions (e.g., gr/gr
or b2/b3) of this gene are very common in some popula-

tions, and gr/gr deletion has been associated with both male
subfertility (245, 366) and TGCC (300).

The GWAS-detected association of testicular cancer risk
with the HPGDS locus is biologically relevant, because this
gene encodes for hematopoietic prostaglandin D synthase,
an enzyme involved in sex determination in several mam-
malian species (284, 461). Recent experimental studies pro-
vided evidence that this pathway might be a target for en-
docrine disruption (267), thus giving an example of a pos-
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sible gene-environment interaction relevant to the
pathogenesis of TGCC.

Although a total of 19 genetic polymorphisms associated
with TGCC risk have been identified to date, it appears that
�25% of TGCC cases, even in the highly susceptible sons
of TGCC cases, can be explained by hereditary genetic fac-
tors (240, 367). This percentage will likely increase after
more genes have been identified in the ongoing large asso-
ciation studies and meta-analyses. Nevertheless, the large
increase in sporadic TGCC cases observed worldwide
within a generation or two is predominantly caused by an
augmented negative influence of yet to be identified envi-
ronmental factors.

2. Fetal origin of TGCC

Basic studies (319, 344, 384) and epidemiological trends
(162, 282) favor the hypothesis that TGCC is of fetal origin

and should be considered a late-onset disease due to failure
of normal fetal programming of the differentiation of pri-
mordial germ cells through a gonocyte stage into spermato-
gonia (FIGURE 5).

The expression pattern of human gonocytes resembles that
of embryonic stem cells because of the retention of pluripo-
tency genes, such as POUF5/OCT4 and NANOG, but also
includes expression of the KIT receptor, AP-2� (TFAP2C),
podoplanin (PDPN/D2-40), and a number of germ cell spe-
cific genes (11, 190, 347, 396). The expression of the plu-
ripotency genes is gradually lost during the second half of
pregnancy and is rarely present after birth, although it
might occasionally be seen in a few spermatogonia in nor-
mal testicles of boys younger than 1 yr (188). However, in
individuals with a high risk of developing germ cell cancer,
e.g., patients with mutations in SRY or the androgen recep-
tor gene (AR), and in patients with 45X/46 XY mosaicism,
undifferentiated gonocytes might persist during childhood
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FIGURE 5. Model for the pathogenesis of testicular germ cell tumors of young adults, which are derived from
germ cell neoplasia in situ (GCNIS), previously known as carcinoma in situ testis (CIS). These tumors are an
example of developmental cancer and are thought to be caused by a combination of adverse environmental and
genetic factors (multifactorial and polygenic). The key pathogenetic event is insufficient masculinization and
impaired function of the testicular somatic cell niche, which in fetal life is mainly composed of Sertoli and Leydig
cells. The insufficient stimulation of developing germ cells causes arrest of gonocyte differentiation to sper-
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in the figure). The delayed gonocytes (pre-GCNIS cells) then gradually acquire secondary genomic aberrations
(including polyploidization and gain of chromosome 12p), while adapting to the changing niche, especially during
and after pubertal hormonal stimulation of the testis. Increased proliferation results in malignant transforma-
tion of GCNIS cells into an invasive tumor, either a seminoma or nonseminoma (the latter through the
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testicular somatic cell niche. [Updated and modified from Rajpert-De Meyts (344).]
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and subsequently in adulthood develop into the abnormal
intratubular cell pattern termed GCNIS (238, 344, 382,
384) (FIGURE 5). GCNIS cells are precursors of both semi-
noma and nonseminoma, although invasive TGCC might
not develop in a testis harboring GCNIS until several years
after detection of the cells by testicular biopsy (385).

Epidemiological evidence also supports the idea of fetal
origin of germ cell cancer. First, the fact that TGCC inci-
dence peaks in young adulthood (between ages 20 and 45
yr) suggests an early onset of the malignant process (40, 79).
Second, several epidemiological studies have shown a birth
cohort effect in the incidence of TGCC (40, 107) so that
men born in later calendar years have higher incidence
rates. Third, immigration studies have shown that young
men moving from countries with low or high risk of TGCC
to a country with an intermediate risk developed TGCC
with the same incidence as men of their home countries,
while their sons born abroad acquired the risk of the host
county (163, 297). Furthermore, the fetal hypothesis is in
line with clinical studies of patients with disorders of sex
differentiation (DSD) and congenital malformations, such
as cryptorchidism and hypospadias, who are at significantly
increased risk of developing TGCC (95, 373, 378). In ad-
dition, a study has shown that mothers’ exposure to persis-
tent chemicals was associated with increased risk of TGCC
in their sons (157).

3. Testicular cancer as a sign of TDS

The heterogeneous group of above-mentioned conditions
with reported increased risk of TGCC might have one thing
in common: compromised development and function of the
fetal Leydig and Sertoli cells. Several studies have investi-
gated the role of these cells in the pathogenesis of TGCC
and convincingly demonstrated that testicles harboring
TGCC, and biopsies from men with cryptorchidism, hypos-
padias, and men with poor semen quality, often show evi-
dence of dysgenesis in parts of the testicular tissue, includ-
ing clusters of incompletely differentiated Sertoli cells,
microliths, and Leydig cells clumps (sometimes called mi-
cro-nodules) (FIGURE 6) (368, 386, 387).

These histological observations in addition to strong epide-
miological evidence that TGCC, impairment of spermato-
genesis, cryptorchidism and hypospadias are linked to-
gether in a “risk factor network” have prompted us to pro-
pose the existence of a TDS of fetal origin (FIGURE 3) (387).

The disorders that constitute the condition complex of TDS
might have one more thing in common, namely, feminiza-
tion of the ano-genital distance (AGD) which is normally
50-100% longer in males than in females (369). Interest-
ingly, some studies have shown that males with cryp-
torchidism, low sperm counts, low androgen levels, or hy-
pospadias have decreased AGD (101, 102, 106, 408, 412,
415). It has been confirmed in animal studies that shorter
AGD in males with congenital abnormalities of their geni-
talia reflects decreased androgen levels during the fetal pe-
riod, as the shorter AGD is already visible after birth. Inter-
estingly, in a large study of boys with cryptorchidism and
hypospadias, short AGD was also associated with smaller
penis size, confirming the association with neonatal andro-
gen action (415). TGCC, cryptorchidism, hypospadias, and
sperm count are not only risk factors for each other at an
individual level, but they also seem associated at the popu-
lation level. Indeed, a French group reviewed international
data on TGCC, sperm count, hypospadias, and cryp-
torchidism and found correlations between the signs of TDS
and geographical location, lending support to the unifying
concept of the TDS hypothesis (379).

B. Cryptorchidism

Cryptorchidism is one of the most common birth defects,
affecting 2–9% of boys born full term (47). The testes nor-
mally descend to the bottom of the scrotum before birth,
and if one or both of them fail to do that, the condition is
called congenital cryptorchidism. Once fully descended, the
testes can later ascend to a cryptorchid position (443),
which is called acquired cryptorchidism or ascending testis:
its frequency is variable with the highest reported incidence
nearly equal to that of congenital cryptorchidism (3). Epi-
demiological studies that have used registries as a data
source usually combine these two groups together, because
they are not separated in any International Classification of
Diseases (ICD) classification. This adds some confusion to
literature. Incidence rates that are based on numbers of
orchidopexy typically reflect the frequency of both congen-
ital and acquired cryptorchidism. The most reliable data on
the incidence of congenital cryptorchidism come from co-
hort studies where the boys have been examined with stan-
dardized techniques and clear diagnostic criteria. Many
clinical cohort studies with a long follow-up have used the
classification of Scorer (377) to divide congenital cryp-
torchidism into subgroups based on the lowest position of
the testis by physical examination: nonpalpable, inguinal,

FIGURE 6. Examples of testicular dysgenesis in biopsy materials from men with abnormal spermatogenesis. A: specimen showing dysgenetic
seminiferous tubules (D) containing numerous undifferentiated Sertoli cells and several microliths (M), but no germ cells. Tubules containing all
types of germ cells, including spermatocytes and spermatids, are seen to the right. Hematoxylin-eosin staining was used. B: i) Immunostaining
with OCT4, an embryonic marker, of testicular biopsy specimen with a mixture of GCNIS and normal spermatogenesis. ii) Same, higher
magnification showing details of tubules with GCNIS and normal spermatogenesis, respectively. Note that OCT4 is only expressed in the nuclei
of the GCNIS cells.
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supra-scrotal, high scrotal, and normal scrotal. English
studies using this classification showed an increase of the
incidence of cryptorchidism from 2.7% at the end of the
1950s (377) to 3.8% at the end of the 1980s (184), and
further up to 5.0% in the early 2000s in boys with birth
weight above 2,500 g (3) (FIGURE 7). Similarly, studies in
Copenhagen showed an increase in the cryptorchidism rate
from 1.8% in 1959–1961 to 8.5% in 1997–2001 (47).
Interestingly, in Finland, the incidence of cryptorchidism
remained at a low level (2.1%) (47) (FIGURE 7). Some pedi-
atric surgeons have challenged the disease definition by dis-
counting high scrotal cryptorchidism as a defect (81). It is
evident, however, that the proper place of the testis is at the
fully descended position, although high scrotal testes are
usually not treated surgically as are all other, more severe
cryptorchid cases (356). Cryptorchid testes are brought
down to the scrotum surgically to preserve their spermato-
genic capacity and to facilitate cancer surveillance. Sper-
matogenic cells suffer and start to disappear early in child-
hood unless the testes are in the proper position (211).

Cryptorchidism is a risk factor for infertility, testis cancer,
and hypospadias (373, 374), suggesting that these condi-
tions share similar causes affecting fetal testicular develop-
ment. However, although early orchidopexy (surgical treat-
ment) improves the fertility chances, it might not decrease
the risk of testicular cancer (296, 452), although this has
been suggested in a few studies (330).

1. Causes of cryptorchidism

Testicular descent is hormonally regulated. The key regula-
tory hormones are testosterone and insulin-like peptide 3
(INSL3), both of which are secreted by Leydig cells in the

testis (38). Pituitary luteinizing hormone (LH) stimulates
Leydig cell differentiation and hormone secretion. In the
presence of a decrease in these hormones, or defects in their
receptors, the testes remain incompletely descended. A
number of genetic defects in hormone synthesis and recep-
tors have been described over the last 30 years and are often
associated with cryptorchidism as part of a syndrome, but
they are found very rarely in patients with isolated cryp-
torchidism (i.e., without other genital abnormalities) (263).
It is noteworthy that isolated cryptorchidism might be
caused by gene mutations that physically hamper the testic-
ular descent, such as mutations of the AMH gene or its
receptor (AMHR2) in the Persistent Müllerian Duct Syn-
drome (1, 192).

Children with 46,XY karyotype and androgen insensitivity
typically have testes either in the abdominal or inguinal
position, i.e., they have not undergone inguinoscrotal trans-
fer in utero. Mice with INSL3 deficiency, or with RXFP2/
LGR8 (INSL3 receptor) inactivating mutation, have testes
in a high abdominal position, which led to a hypothesis that
the early trans-abdominal descent would depend on this
hormone (302, 479). However, it seems apparent that both
androgens and INSL3 act in the whole process. They act on
the gubernaculum, which is an actively transforming fetal
organ first attaching the testis to the inner opening of the
inguinal canal and then guiding it through the canal to the
scrotum, and finally dissolving away. Mutations in INSL3
or RXFP2 have been detected in surprisingly few cryp-
torchid patients (44, 108). Also, although some polymor-
phisms have also been described, they have appeared only in
a heterozygous manner and have also been reported in
healthy individuals. In recent years, however, GWA studies
have begun to shed some light on possible gene polymor-
phisms that predispose to problems with testis descent, ei-
ther as part of TDS or nonsyndromic cryptorchidism. A
study of several TDS components, including cryptorchid-
ism, which combined GWAS with systems biology ap-
proaches, found weak associations with gene variants
within TGFBR3 and BMP7 loci (86). Associations with
other SNPs located in or near TGFBR3 locus have recently
been confirmed in a larger study, which also found de-
creased expression of TGFBR3 protein in the gubernacu-
lum of cryptorchid rats (34).

However, until larger studies are performed, the most com-
monly identified genetic defects associated with cryp-
torchidism will remain those that affect androgen produc-
tion or action. Cryptorchidism is clustered in families,
which suggests a genetic or intrafamilial environmental
cause. This has been analyzed in large registry-based epide-
miological studies comparing the incidence in first-degree
relatives. Monozygotic and dizygotic twin brothers have
similar concordance for cryptorchidism, suggesting a minor
role for genetic factors (375). Full brothers have a lower risk
than twin brothers if one of the boys is cryptorchid, but
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their risk is higher than that of half-brothers. Furthermore,
maternal half-brothers have a higher risk than paternal
ones. All these findings implicate the importance of mater-
nal environment during pregnancy.

2. Roles of hormonal exposures

Animal experiments show that anti-androgens and estro-
gens can cause cryptorchidism. Androgen action at a spe-
cific male programming window during rat embryonic days
13.5–17.5 is critical for proper masculinization, and failure
at this developmental phase causes an irreversible under-
masculinization, including cryptorchidism, that becomes
apparent much later (454). Human development is of
course different in timing, but the same principles seem to
work there also. In the human, critical male programming
occurs at gestational weeks 7–15, i.e., in early and mid-
pregnancy (344, 387).

The list of emerging anti-androgens is growing. The com-
pounds that act at the receptor level as antagonists or par-
tial agonists include widely spread pesticide congeners such
as dichlorodiphenyldichloroethylene (DDE) and fungicides
such as vinclozolin and procymidone. Even larger groups of
compounds perturb androgen synthesis. Phthalates are
well-studied examples of these chemicals. Interestingly, the
effects of phthalates show variation in effects on different
species (148, 228), whereas the effects of receptor antago-
nists are similar over these species. Since testing is per-
formed with rodent models, some anti-androgens that
might disturb human steroidogenesis without affecting ro-
dents could go unnoticed.

A crucial question is whether human exposure to one or a
mixture of many of these chemicals is sufficient to cause
disruption of male programming. Mixture studies in exper-
imental animals have shown clearly that these chemicals
can act in a simple additive manner, rendering even low
doses harmful (76). Modeling studies have demonstrated
that experimental results from exposing animals to mix-
tures of chemicals can be predicted on the basis of response
curves of the individual chemicals (213). Estrogenic chem-
icals and dioxins can also cause cryptorchidism. Estrogens
can prevent production of INSL3, which might explain its
mechanism of action. In humans, exposure to a synthetic
estrogen diethylstilbestrol was linked to increased rate of
cryptorchidism (321), but environmental estrogens are typ-
ically much less potent. However, together with anti-andro-
gens they might act in the same direction. It is uncertain
how significant is their impact. Dioxins act via aryl hydro-
carbon receptor (AhR). Rodent studies have shown that
dioxins can induce cryptorchidism (141), but it is not
known how this effect is mediated.

Epidemiological studies on relationships between exposures to
endocrine disruptors and cryptorchidism have analyzed single
chemicals or chemical groups, and only a few have attempted

to integrate these data. Exposures have been measured in
blood, urine, placenta, and breast milk that serve as a proxy to
mother’s load of chemicals during pregnancy. In some cohort
studies, careful ascertainment of the diagnosis has been com-
bined with exposure measurements. The results vary accord-
ing to the matrix that has been used for exposure assessment.
The breast milk level of polybrominated flame retardants was
associated with an increased risk of cryptorchidism, whereas
placental levels were not (256). Similarly dioxin levels in breast
milk of Danish women were associated with an increased risk
of cryptorchidism (222, 223), whereas placental levels did not
show an association (446). In Finland, dioxin levels in neither
breast milk nor placenta were associated with cryptorchidism.
In American studies of dioxins and DDT, no association was
observed with maternal serum values and children’s cryp-
torchidism risk (246). French studies found an association
with polychlorinated biphenyls (PCB) levels in breast milk and
the incidence of cryptorchidism (55), whereas Danish-Finnish
studies did not, or showed the opposite (222).

Mixture effects have been analyzed in only a few studies.
After combining data from several pesticide exposures by
permutation analysis, an association between the level of
chlorinated pesticides in breast milk and risk of cryp-
torchidism in offspring was found (89). Greenhouse work-
ers exposed to pesticides during pregnancy were also shown
to have an increased risk of producing cryptorchid sons
(14). Phthalate levels in breast milk were not associated
with cryptorchidism risk, but they were linked to an in-
creased LH-to-free testosterone ratio in the son at the age of
3 mo, suggesting testicular impairment during lactation
(257). It is apparent that there are large data gaps, because
only few exposures have been analyzed thus far. It is also
unlikely that any individual chemical would have a major
impact on the incidence of cryptorchidism. Combination of
data from several exposures, particularly those that are
known to affect the same signaling cascade, is needed to
assess the whole chemical load, or “exposome” as it is
called nowadays.

3. Lifestyle factors

The significance of lifestyle factors, such as smoking and
alcohol consumption, as risk factors for cryptorchidism re-
mains contentious. There is evidence that heavy smoking
during pregnancy (�10 cigarettes per day) is associated
with an increased risk of having a bilaterally cryptorchid
son (417), while other studies have not shown a link be-
tween smoking during pregnancy and cryptorchidism (88).
Registry-based studies did not find an association with
mother’s alcohol consumption and cryptorchidism in their
sons (404), whereas a prospective follow-up study demon-
strated a dose-dependent increase in the incidence of cryp-
torchidism in drinking mothers’ offspring (90). The lowest
adverse effect dose was five units of alcohol per week, which
is considerably lower than expected. However, the number
of mothers in the group with the highest consumption was
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small, which influenced strongly the overall result and
might therefore also be a chance finding. Smoking affects
the growth of the fetus, and being small for gestational age
at birth is a well-established risk factor for cryptorchidism
(47). Prematurity is another strong risk factor, because tes-
ticular descent occurs normally during the last trimester and
therefore might not occur before a premature birth.

Gestational diabetes has become more frequent due to the
increasing trends in obesity. In women with gestational di-
abetes, the risk of delivering a cryptorchid son is increased
fourfold compared with non-diabetics (447). The underly-
ing mechanism is not known, although early growth delay
of the fetus in the first trimester might play a role. Interest-
ingly, even children of diabetic mothers, who are born large
due to compensatory growth in last part of pregnancy, have
been found to grow poorly in the first trimester (328). In
contrast, no association between gestational diabetes and
cryptorchidism was found in a registry-based study from
Israel (424).

C. Hypospadias

The penile congenital malformation, in which the urethra
opens somewhere on the ventral side of the penis instead of
the tip, is called hypospadias. The urethra might remain
split over a long distance. The severity of the hypospadias is
defined by the location of the opening. In the distal, mild
form, the urethra opens in the glans or corona (sulcus)
which is the border of the glans and the shaft. Registration
of this birth defect varies in the malformation registries,
because it does not necessarily require any surgical treat-
ment. Physiological phimosis might also hide this defect in

the newborn, and it might become apparent only after the
foreskin can be easily retracted (45, 46). This should be
considered when incidence data between countries are com-
pared, because ascertainment, reporting, and registering
practices vary (266, 421). More severe forms of hypospa-
dias require surgical reconstruction of the penile urethra,
and hospital discharge registries give a reliable estimate of
their prevalence. In middle, or penile hypospadias, the
opening of the urethra is located on the shaft of the penis,
while in proximal hypospadias the opening can be found in
the penoscrotal area. Sometimes both of these are called
proximal in contrast to the distal form.

1. Incidence of hypospadias

Increased incidence of hypospadias has been reported in
Australia, US, and Europe over different time periods (200,
299, 326, 327, 421). The latest data from Denmark and
Sweden also indicate an increasing trend (252, 308, 309).
Until the 1990s, many malformation registries suffered
from under-reporting; however, after a more active search,
the hypospadias rate was found to be much higher than
previously reported (161). This was also one reason for the
controversies in the debate of incidence rates (5, 66, 97,
118, 334). Prospective clinical studies might be more ac-
curate and therefore show higher rates than registry stud-
ies, for example, 1% versus 0.5% in Denmark (46, 253),
as more mild cases might be noted in prospective studies.
Interestingly, there are great differences between coun-
tries, for example, 1% in Denmark versus 0.3% in Fin-
land according to parallel standardized clinical studies
(46, 445). A list of incidence data of hypospadias is pre-
sented in TABLE 1.

Table 1. Incidence of hypospadias in prospective or cross-sectional clinical studies

Country Study Type Rate of Hypospadias
Reference

Nos.

USA, Rochester, MN Prospective cohort study (n � 4,474) 0.6% (body wt �2,500 g), 0.8% of all
boys

158

USA, New York City, NY Prospective study on pregnant women and
infants

0.54% of live-born boys 271

USA, collaborative perinatal
project

Prospective study (n � 53,394 consecutive
single births)

0.80% of single-born boys (76% of cases
detected at birth)

295

Korea, 38 hospitals Prospective study (n � 7,990) 0.21% of boys 74
Southern Jordan Clinical study of 1,748 boys (aged 6 to 12 yr) 0.74% of boys 9
Finland,Turku Prospective cohort study (n � 1,505); total

hospital cohort (n � 5,798)
0.27% of live-born boys, 0.33% of live-

born boys
445

Netherlands, Rotterdam Prospective study (n � 7,292) 0.73% of newborn boys 332
Denmark, Copenhagen Prospective cohort study (n � 1,072) 1.03% of live-born boys (at 3 yr: 4.64%

including also milder cases detected
after physiological phimosis resolved)

46

Bulgaria, 5 regions Cross-sectional clinical study (n � 6,200 boys
aged 0 to 19 yr)

0.29% of boys 224

Modified from Toppari et al. (423).
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2. Causes of hypospadias

Masculinization of the male is driven by androgens during
early fetal development. Penile development is regulated by
dihydrotestosterone that is produced locally from testoster-
one by 5-�-reductase. Several genetic mutations leading to
hypospadias are known, and they are typically linked to
disorders of testicular differentiation, testosterone synthe-
sis, conversion of testosterone to dihydrotestosterone, or
androgen receptor action (199). The same classification
that is used for the severity of androgen insensitivity can
also be used for hypospadias (342). Despite this knowledge,
a genetic cause can be found only in a minority of hypos-
padias cases, and an endocrine abnormality can be found
only in �20% of the patients (353). Environmental anti-
androgens cause hypospadias in experimental animals in
the same manner as they induce cryptorchidism (354),
which makes it reasonable to search for common causes of
these disorders.

Genetic defects, other than those of androgen receptor and
steroidogenic enzymes, include Homeobox genes HOXA
and HOXD, fibroblast growth factor (FGF) 8, FGF10, FGF
receptor 2, and bone morphogenetic protein 7 (123, 123,
132, 288, 290, 292). Activating transcription factor (ATF)
3 might also be involved, since its transcript level was found
to be elevated more often in the foreskin of boys operated
on for hypospadias than in those circumcised (242). The
gene is estrogen regulated and influences transforming
growth factor-� signaling, which might explain why estro-
gens can also increase the risk of hypospadias (241, 462).
HOXA13 mutations can cause the hand-foot-genital syn-
drome which includes hypospadias (123, 290), and hypos-
padias can be a part of many other multi-malformation
syndromes.

Mutations in MAMLD1 and NR5A1/SF1 can cause testic-
ular dysgenesis, with hypospadias (36, 125). Mutations are
rare (313), but the genes can be targets of endocrine disrup-
tors as demonstrated for NR5A1 (407). Androgen and es-
trogen receptor polymorphisms have been associated with
varying risk of hypospadias, but the results are not very
consistent and require larger study populations than avail-
able so far (27, 39, 440, 451). Diacylglycerol kinase � poly-
morphism has also been linked to the risk of hypospadias
(439).

3. Roles of prenatal exposures

Being small-for-gestational age is a risk factor for both cryp-
torchidism and hypospadias (6, 7, 26, 331, 331). Both birth
defects can be caused by anti-androgens and estrogens, as
shown by epidemiological studies following the children of
women who used diethylstilbestrol (DES) during pregnancy
(422). DES increases the risk of hypospadias even in the
second generation, as the sons of in utero-exposed women
have a higher prevalence of hypospadias than other males

(54, 199, 210). This might reflect an epigenetic effect by
DES. DES-related adverse effects are very similar in human
and experimental animals (272), and there is no reason to
believe that the anti-androgen-related effects would differ.

Epidemiological studies on hypospadias have largely relied
on registries, because the condition is rather rare and it is
difficult to collect enough cases in prospective clinical stud-
ies to reach statistical power. As presented earlier, the reg-
istry studies on hypospadias are problematic due to several
sources of error in classification of cases versus controls. A
possible association between the risk of hypospadias and
pesticide exposure was assessed in a meta-analysis that
showed a small, increased risk of hypospadias in sons if
parents were exposed to pesticides. Medical charts, paren-
tal interviews, occupation, job exposure matrix, or linkage
of agricultural census and birth records were used for the
assessment of exposure (360). Pooled risk ratios were 1.36
(95% CI 1.04–1.77) and 1.19 (95% CI 1.00–1.41) for
maternal and paternal exposures, respectively (360). How-
ever, the studies could not assess which chemicals were
behind the association, because the pesticides included a
large number of different chemicals.

Recent studies using a job exposure matrix as a proxy for
pesticide exposure suggested an association of hypospadias
with heavy metals, or maternal exposure to any endocrine
disrupting chemical (EDC) (134), but did not show a signif-
icant association between pesticide exposure and hypospa-
dias (287, 298, 361). Maternal serum samples were col-
lected during pregnancy in the Collaborative Perinatal Proj-
ect (CPP) conducted in the US in the 1950s and 1960s (246,
333). Several chemicals were analyzed in these samples, and
the children were examined many times before they were 7
yr old. There was no linear association of PCB levels with
hypospadias, but there was an increased odds ratio for the
sum of some PCBs (270). No significant association was
found between hypospadias and chlordane-related contam-
inants, DDE, �-hexachlorocyclohexane, or other pesticides
(246, 270, 333, 425). Another study relating the levels of
DDT or DDE in pregnancy serum samples from the 1950s
and 1960s with hypospadias in the sons also showed no
association (42). In a study from the 2000s, an increased
risk of hypospadias was associated with above-median level
of hexachlorobenzene (HCB) in primiparous women as as-
sessed from serum samples collected several weeks after
delivery (134).

No significant associations between hypospadias and mid-
pregnancy serum levels of PCBs, PBDEs, HCB, DDT, or
DDE were found in the study of Carmichael et al. (66).
Serum levels of PBB at the time of conception showed no
association with the risk of hypospadias according to a
small questionnaire-based study (392). Phthalate metabo-
lite level (mono-4-methyl-7-carboxyheptyl)phthalate (7cx-
MMeHP, a DiNP metabolite) in amniotic fluid showed el-
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evated odds ratios for hypospadias (1.69 [0.78 to 3.67]),
but was not consistently associated with the amniotic fluid
levels of steroid hormones or insulin-like peptide 3 (172).
DEHP [di(2-ethylhexyl)phthalate] metabolite levels did not
show similar associations (172).

A vegetarian diet of mothers was associated with an in-
creased risk for hypospadias in the British ALSPAC study
(310). In contrast, a decreased risk was reported for moth-
ers having fish or meat in their diet during pregnancy (6).
Also, a phytoestrogen-rich diet was associated with a re-
duced risk of hypospadias (65). No difference was found in
the hypospadias risk of boys whose mothers used, or did
not use, organic food diet, but a frequent concurrent con-
sumption of high-fat dairy products (milk, butter) while
rarely or never choosing the organic alternatives during
pregnancy was associated with an increased odds ratio of
hypospadias (adjusted OR 2.18, 95% CI 1.09–4.36) (75).
The need for assisted reproductive techniques (ART) and
subfertility are risk factors for hypospadias (83, 201, 209,
413, 455). While fetal exposure to DES increased the risk of
hypospadias, the role of other pharmaceutical sex steroids
is controversial. Use of progestins was reported to increase
the risk of hypospadias (63, 84). However, according to a
meta-analysis of 14 studies, no association between expo-
sure to sex steroids (except DES) during the first trimester
and external genital malformations could be found (348). It
is apparent that epidemiological studies have difficulties in
case ascertainment, exposure assessment, and statistical
power. Experimental studies have clearly indicated risks of
hypospadias associated with anti-androgenic chemicals,
such as phthalates and vinclozolin (76, 208), but epidemi-
ological studies have failed to reach any comprehensive
measurement of these compounds in large enough study
populations of humans to draw conclusions about their role
in hypospadias.

D. Onset of Male Puberty

While a clear downward trend in timing of puberty has been
documented among girls, this trend has not been clear in
males until recently. In fact, American data on male puberty
(1940–1994) were reviewed by an expert panel in 2006,
which failed to find a significant decline, probably due to
insufficient data as well as use of different study designs and
study populations (111). However, several data have
emerged since then suggesting a significant downward trend
in male pubertal timing (FIGURE 8). For example, a Euro-
pean study of 21,612 boys born 1935–1969 showed a
downward trend in age at peak height velocity (PHV) (8),
although other European studies did not find such changes
(323).

Male puberty marks the transitional period during which
the infantile boy attains adult reproductive capacity and
develops into a mature man. Puberty usually starts at

11.5 yr of age, although with large interindividual vari-
ability (9 –14 yr). Pubertal onset in a boy before 9 yr or
after 14 yr of age is considered pathological and necessi-
tates further evaluation to exclude underlying patholo-
gies. The timing of puberty is determined by genetic as
well as environmental factors such as body composition,
physical fitness, nutritional and socioeconomic status,
ethnicity, residence, foreign adoption, and exposure to
endocrine disrupters (325).

The pubertal development of secondary sexual character-
istics begins with growth of the testes as a result of follicle
stimulating hormone (FSH) stimulation of seminiferous
epithelium. When testicular volume exceeds 3– 4 ml, it is
considered a definite clinical sign of pubertal onset. The
stimulation of spermatogenesis involves multiple endo-
crine and local factors including FSH, LH, testosterone,
inhibin B, AMH, etc., and the increasing testicular vol-
ume is a marker of spermatogenesis. Leydig cells are
stimulated by LH at the onset of puberty, and subse-
quently start to produce testosterone which influences
the growth of the penis (width and length), androgeniza-
tion of the scrotal sac, and pubic hair development. Al-
ternative pubertal markers include the pubertal growth
spurt which is best described by the age at PHV, the point
of maximal growth velocity in puberty (8). Age at PHV is
a late pubertal marker, and usually occurs when the boy
is in genital stages 3– 4 when testicular volumes are
10 –11 ml. Another late marker of puberty is voice break-
ing, which occurs at an average age of 14 yr (195). Age at
first emission of spermatozoa (spermarche) could be con-
sidered the male counterpart of age at menarche in fe-
males. Age at first emission of spermatozoa can be re-
corded in first morning urine samples (307), or by self-
reported involuntary or voluntary emissions (420).
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FIGURE 8. Recent changes in male pubertal timing. Testicular
volume was �3 ml. [From Mouritsen et al. (293).]
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1. Endocrine regulation of pubertal onset

The hypothalamic-pituitary-gonadal (HPG) hormone axis
has already been activated in the neonatal period, which
results in increase in circulating levels of FSH, LH, testos-
terone, and inhibin B (a period termed “mini-puberty”)
(19). The physiological reason for this phenomenon, which
lasts a few months, is not known, and the presence of cir-
culating androgens does not result in virilization of genitals,
probably because of the relatively short period of androgen
exposure, and because androgen receptors are not yet
widely expressed. Most of testosterone is bound to sex hor-
mone binding globulin during mini-puberty. Mini-puberty
is, however, accompanied by descent of undescended testes
(47). Although the factors responsible for this early HPG
activation and its subsequent silencing remain unknown,
epigenetic factors have been suggested to play a role. After
11 years of postnatal suppression, the HPG axis is reacti-
vated, which results in increases in circulating levels of FSH
and LH which in turn stimulates testosterone, Insl3 and
inhibin B (18, 183). The mechanisms underlying the puber-
tal reactivation of the HPG axis are largely unknown, but
most likely include physiological and lifestyle factors such
as fat mass, physical fitness, nutrition, vitamin D, and psy-
chosocial factors (325). The pubertal period is character-
ized by very high activity of the growth hormone-insulin-
like growth factor axis (194) as well as high insulin levels
(397, 398), and resembles in many ways a transient acro-
megalic state associated with insulin resistance.

Signs of current changes in pubertal timing were evident in
the cross-sectional Copenhagen Puberty study, where a sig-
nificant 3–4 mo downward change in age at pubertal onset
(testicular volume �3 ml) during a 15-yr period was re-
ported in the very same area of the capital region (399).
These findings were confirmed in a longitudinal followup
study in the same Copenhagen area (293). In accordance
with these findings, much earlier pubic hair development
was found in the Avon Longitudinal Study of Parents and
Children (ALSPAC) cohort from the United Kingdom (UK)
(data collected 1999–2005) compared with the original UK
data collected 1949–1969 by Marshall and Tanner (11.4
vs. 13.4 yr) (285). Likewise, a recent US study reported
mean ages of beginning of genital and pubic hair growth 6
mo to 2 yr earlier than in older US studies (165). Altogether,
it appears that the age at which the Copenhagen male pop-
ulation reaches puberty and attains adult reproductive ca-
pacity is decreasing. We do not know the reasons or long-
term consequences for these trends, but suggest that the
observed changes in age at pubertal onset might represent
early warnings of environmental factors influencing male
reproductive health.

E. Changing Testosterone Levels

Testosterone produced by the Leydig cells in the testes is the
major male sex steroid. It plays important roles in sex dif-

ferentiation as well as in male puberty and in adulthood for
developing and sustaining the secondary male sex charac-
teristics and spermatogenesis. Production of testosterone is
stimulated by LH secreted by the pituitary, which itself is
stimulated by gonadotropin releasing hormone (GnRH)
from the hypothalamus. On the other hand, circulating tes-
tosterone has, together with estrogen, an inhibitory effect
on both GnRH and LH secretion. In the adult male, a bal-
ance between LH and testosterone level is thus attained
through a hormonal negative-feedback loop, which is part
of the hypothalamo-pituitary-testis hormone axis (166).
Only 1–2% of circulating testosterone occurs free in the
bloodstream; the vast majority of circulating sex steroids is
bound to serum proteins such as sex steroid binding protein
(SHBG), which has a high affinity for binding of both tes-
tosterone and estradiol (154). Tissues of the body, including
the hypothalamus and pituitary, only “see” the free (un-
bound) sex steroids, and SHBG serum level is therefore an
important coplayer in the GnRH-LH-testosterone hor-
monal feedback loop.

1. Age-related changes in male testosterone levels

Both total and free testosterone levels decrease in men with
increasing age (FIGURE 9), while SHBG and gonadotropin
levels increase. There is no doubt that age-related changes in
body composition and lifestyle contribute towards this
change as overweight, type 2 diabetes, and decreased exer-
cise all are associated with decreased total testosterone lev-
els. Moreover, obesity or more severe metabolic illnesses
are also associated with decreased free testosterone (144,
174, 426). When adjusting for some of these covariates, the
age trend in total testosterone is attenuated, while declining

35

30

25

20

15

10

5

0
0 10 20 30 40 50 60

Age

nM

older cohorts

cross sectional
longitudinal

FIGURE 9. Average male serum testosterone levels by age (full
drawn line) based on healthy men from the general population show
only a moderate decline from the age of 20–60 years. Superim-
posed (dotted line) is an illustration of the consequence of applying
the average rate of decline (�1.6%/year) observed in a longitudinal
study of individual testosterone levels (115) from the age of 22 (year
of peak testosterone levels in the cross-sectional material). [From
Andersson et al. (15).]
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free testosterone and increasing LH and SHBG with age are
seen even with adjustment for BMI, comorbidity, and
smoking (468). Declining testosterone with increasing LH
levels in aging men suggest an impairment of testicular func-
tion with age, which is further supported by the fact that
older men have an attenuated testosterone response to LH
stimulation (243).

In older men, however, declining testosterone is not always
accompanied by a reciprocal rise in LH. This reflects the
fact that the attenuation of GnRH-LH signaling might in-
fluence the ability to compensate for an impairment of the
Leydig cells inferred by aging through expected increased
LH signaling. This blunting of the HPG axis might further
lead to declining testosterone levels (442). Cross-sectional
studies on age-related male testosterone levels generally
show relatively modest changes in serum testosterone levels
between different age groups with estimated changes per
year of 0 to �0.8%, while steeper declines in individual
total testosterone (e.g., �1.6%/year) have been observed in
longitudinal studies (FIGURE 9) (115). The discrepancy in
the rate of age-related decline in testosterone levels ob-
served in cross-sectional studies compared with longitudi-
nal studies could be due to a selection bias. Cross-sectional
studies might be more likely to include the healthier seg-
ment of elderly men while longitudinal studies might be
more prone to followup on participants irrespective of
health status. However, we and others have suggested that
a “true” age-related rate of decline in testosterone in cross-
sectional study material could be blunted by the occurrence
of a birth cohort related decline in testosterone levels over
the generations of men included in the cross-sectional ma-
terial (15, 115).

2. Secular trends

In 2007, a paper reported a population-level decline in male
testosterone levels over time (427). The paper was based on
a US study of more than 1,300 men, some of whom were
examined for up to three times over an 18-yr period. The
age-independent secular change in total testosterone levels
and bioavailable testosterone corresponded to, respectively,
�1.0%/yr and �1.3%/yr over the period 1987–2004
(427). A Danish study, which was published shortly after,
also reported the observation of a secular decline in male
testosterone levels in a study of more than 5,300 men from
the general population in four studies conducted at different
time points between 1982 and 2001 (15). In the Danish
study, the secular decline was significant for total testoster-
one and SHBG levels but not for free testosterone and the
decline could partly, but not exclusively, be explained by a
secular increase in BMI. A Swedish study comparing repro-
ductive hormone levels in comparable age groups of men
examined in 1995 (n � 430) and in 2008 (n � 149) found
that free testosterone was significantly lower in the men
examined in 2008 (430). A trend of lower total testosterone
was also observed in the Swedish men examined in 2008

compared with 1995, although this trend did not reach
statistical significance. The difference between free testos-
terone levels in the Swedish men examined in 1995 versus
2008 remained after adjustment for a difference in weight in
the oldest age group (430). More recently, secular declines
in total testosterone, free testosterone, and SHBG were re-
ported in Finnish men (�3,000) from the general popula-
tion (329). These trends remained significant following ad-
justment for BMI. In the Finnish study, they also observed a
secular decline in gonadotropins, indicating that while de-
cline in testosterone might be due to detrimental changes at
the gonad level, the hypothalamus-pituitary-axis did not
seem to respond appropriately to this change in the exam-
ined men (329).

In studies on secular trends, as those described above, time
period and birth year are completely confounded when ad-
justed for age because time period, age, and birth year are
completely linearly dependent on each other. Thus, while
adjusting for the effect of age on reproductive hormone
levels, it is impossible to discern whether the remaining
differences are due to a time period effect or a birth cohort
effect. Irrespectively, it is perturbing that this secular de-
cline is observed at the population level in several indus-
trialized countries over the same period/birth years.
While a concurrent increase in obesity and metabolic
disturbances and a decrease in number of smokers among
men in the same countries might contribute to the declin-
ing testosterone levels, these health and lifestyle changes
do not seem to fully explain the observed trends (268,
329, 427) (see FIGURE 10).

It is tempting to speculate that there is a link between trends
of declining male testosterone and increased male reproduc-
tive health problems in general. Normal testicular function
is dependent on paracrine communication between cells of
the different compartments in the testis. Testosterone from
the Leydig cells acts on the Sertoli cells and is crucial for
Sertoli cell differentiation during sexual maturation and for
Sertoli cell supported sperm production in the adult male.
Likewise, paracrine factors from the seminiferous tubules
and the peritubular cells influence the function of the Leydig
cells. Thus the hormones inhibin B and anti-Müllerian hor-
mone (AMH) produced by the Sertoli cells both seem to
contribute to the regulation of LH-stimulated steroid pro-
duction of the Leydig cells, with AMH having a suppressive
(428, 429) and inhibin B having a putative stimulatory ef-
fect (167) on testosterone production, the latter presumably
by reversing an inhibiting effect of activin on testosterone
production by the Leydig cells. It is therefore not surprising
that a compromised function in one of the compartments of
the testis is reflected in the function of other compartments
of the testis. Accordingly, while individual men with poor
sperm concentration might have testosterone levels within
the normal range, as a group, subfertile men have lower
serum testosterone levels than fertile men (16). They also
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have, in general, higher serum LH levels resulting in an even
lower testosterone-to-LH ratio compared with fertile men.
This indicates that testosterone levels of subfertile men of-
ten are sustained on the basis of a more intense stimulation
by gonadotropin (16), indicating that impaired Leydig cell
function is more common among men with poor semen
quality.

F. Sperm Concentration and Other
Measures of Semen Quality

The publication of Carlsen et al. in 1992 (64), which con-
cluded that sperm concentration had declined 50% over the
previous 50 years, remains controversial (193, 383). As has
been summarized elsewhere (411), this controversy centers
on three primary concerns. Some authors suggested that
poor or highly variable data invalidated any inference about
trends in sperm counts (232, 316). Others questioned the
validity of the statistical methods used in this analysis (52,
113, 316). Bias due to changing study populations (53) or

confounded by factors such as age and abstinence time
(time between sample collection and last ejaculation) was
also suggested (316, 441).

Following the 1992 publication of Carlsen et al. (64), con-
siderable research activity was initiated to address these
concerns resulting in numerous studies. Some of these used
retrospectively collected and others newly collected data,
which we discuss below. Studies relying on retrospectively
collected data differed in study design and methods includ-
ing: 1) semen parameters examined (sperm concentration,
semen volume, total sperm count, percent motile sperm,
percent morphologically normal sperm); 2) semen collec-
tion and analysis methods (sperm counting methods, motil-
ity criteria, morphology criteria, abstinence time, season of
collection, participation in an external quality control pro-
gram); 3) variables used to assess temporal and spatial vari-
ability (study time period, geographical area); 4) study pop-
ulation/recruitment methods (partners of infertile women
undergoing ART procedure, potential semen donors, male
partners of subfertile couples, and young men with un-
known fertility); and 5) potential confounders controlled in
analysis (age, year of birth, abstinence time, sociodemo-
graphic variables, lifestyle factors, medical conditions) and
sample size.

1. Reanalyses of historical semen quality data

A detailed reanalysis in 1997 of data from the 61 studies
included in the systematic review by Carlsen et al. in
1992 (64) used multivariate linear models to control for
potential sources of bias and confounding factors in
those studies (410). The reanalysis showed significant
declines in sperm concentration in the United States and
Europe/Australia after controlling for abstinence time,
age, percent of men with proven fertility, and specimen
collection method. Declines in sperm concentration in
the United States (�1.5%/yr) and Europe/Australia
(�3%/yr) were greater than the average decline reported
by Carlsen et al. (�1%/yr). However, there was no evi-
dence of a decline in non-Western countries, for which
data were very limited. In 2000, an additional indepen-
dent literature review and updated analysis was per-
formed (411). In this, 47 English language studies pub-
lished from 1934 to 1996 were added to those analyzed
previously. Results of that analysis were consistent with
those of the Carlsen study and the 1997 reanalysis by
Swan et al. (410). The authors concluded that the trends
in sperm concentration previously reported for 1938 –
1990 were also seen in data from 1934 to 1996.

2. Retrospective studies of temporal trends in
semen quality within countries

Since 1992, many studies have examined trends in sperm
counts within individual countries (both developed and de-
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veloping countries) using historical data. A large recent
study reported a significant decline in sperm concentration
and morphology in 26,609 men from the French general
population who provided samples between 1989 and 2005
(363). In line with this, another French study showed a
decline in total sperm count and morphology among semen
donor candidates 1976–2009 (400). Declines in sperm con-
centration have also been observed in Israel 1995–2009
(150), Tunisia 1996–2007 (114), and Scotland 1994–2005
(401). However, no decline was observed in sperm concen-
tration in South Sweden from 1985 to 1995 (41), nor in
North-Eastern Spain between 1960 and 1996 (20).

3. Prospectively designed cross-sectional studies of
semen quality in partners of pregnant women and
unselected young men

To overcome some of the problems of historical and cross-
sectional data, several standardized and coordinated cross-
sectional studies of semen quality have been undertaken.
Two large multicenter studies designed to examine geo-
graphical variation of semen quality were conducted in
partners of pregnant women. Each of these studies used
consistent methods of recruitment and semen analysis and
careful quality control to minimize between-center differ-
ences. The Study For Future Families (SFF) measured semen
parameters in 763 partners of pregnant women in Los An-
geles, CA; Minneapolis, MN; Columbia, MO; New York
City, NY; and Iowa City, IA (351, 409). This was the first
US study to compare semen parameters among study cen-
ters using standardized methods and strict quality control.
These data suggested that sperm concentration, total count,
and motility are reduced in semirural and agricultural areas
relative to more urban and less agriculturally exposed areas.
A multicenter European study collected semen samples
from 1,082 fertile men from four European cities (Copen-
hagen, Denmark; Paris, France; Edinburgh, Scotland; and
Turku, Finland) and demonstrated significant geographical
differences in sperm counts, most notably between men
living in Turku, Finland and Copenhagen, Denmark (186).

Population-based studies of semen parameters in young
men conducted in a consistent manner have been ongoing in
several European countries, the US, and Japan since the late
1990s (117, 187, 189, 274, 275, 320, 340). These studies
provide information about both geographical differences in
semen parameters over the past 20 years as well as about
temporal trends in the countries that include cohorts across
time (189, 191). The temporal trends available to date ex-
hibit considerable geographical variation. Decreases of
more than 20% in total sperm counts and sperm concen-
tration were detected among Finnish men between 1998
and 2006 (191), and a decrease of �15% was seen in young
Spanish men during the most recent decade (274). Con-
versely, a Swedish study that was not coordinated in the
above studies but basically using the same methods found
no significant changes in semen parameters among young

Swedes between 2000 and 2010 (31). Increases in total
sperm count and sperm concentration of �14 and 12%,
respectively, were observed among Danish men between
1996 and 2010 (189). It should be noted that despite the
increase in median sperm concentration during this time
(from 43 to 48 � 106/ml), sperm concentration in these
healthy young men was still markedly lower in 2010 than in
Danish men in infertile couples in the 1940s (median above
60 � 106/ml) (See FIGURE 11). It is notable that most recent
studies also show a very high frequency of morphologically
abnormal spermatozoa. As an example, the recent study of
young men from the general Danish population showed
that the median percent of morphologically normal sperma-
tozoa is �7%, a number that remained substantially un-
changed throughout the 15-yr study period (189).

4. Possible etiological factors underlying
geographical and temporal variability in semen quality

As discussed in the section on origin of testicular germ cell
cancer (FIGURE 3), the hypothesis of the testicular dysgene-
sis syndrome, proposed in 1993, suggests that reduced sper-
matogenesis in adulthood can be a consequence of exposure
in fetal life to environmental chemicals (381). Environmen-
tal chemicals, including endocrine disrupting chemicals
such as dioxins and perfluorinated compounds (PFCs), as
well as complex mixtures such as those in combustion prod-
ucts, appear to affect negatively both the perinatal and adult
testes, emphasizing the importance of environmental and
lifestyle factors that have impacts throughout life (380).
Western lifestyle (sedentary work/lifestyle, obesity) is also
potentially damaging to sperm production (103, 131, 175)
as are other lifestyle factors (stress, sleep, smoking, mater-
nal smoking, nutrition) (4, 130, 138, 173, 234). Data on the
effects of environmental chemicals, such as pesticides, food
additives, DDT, PCBs, or plasticizers, on spermatogenesis
both in the perinatal period and in adult men are limited,
lacking, or inconsistent (87, 160, 261). However, reports
on reduced sperm counts and azoospermia in men exposed
to dibromochloropropane (DBCP) (137, 335, 460) and di-
oxin (280, 281) provide proof of principle that exogenous
chemicals during adult life can disturb human spermato-
genesis as has been shown in numerous rodent studies (119,
140, 159, 444). In addition, recent studies have indicated
that some endocrine disrupters, including ultraviolet filters,
might have a direct effect on human sperm functions (289,
371, 414), including effects on CatSper, the calcium ion
channel, which is crucial for sperm movements and acro-
some reaction (239, 405).

Observations from wildlife and animal experiments lend
support to the idea that environmental factors can adversely
affect male reproduction. An example is the finding that
cryptorchidism and other of the symptoms associated with
TDS in humans, have also been reported in large numbers
among populations of Sitka black-tailed deer in Alaska
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(56). Similar findings from studies of wildlife were also
reported by other authors (cf. Ref. 459).

5. Semen quality and fecundity

Since 1980, the World Health Organization (WHO) man-
ual for the examination of human semen has served as a
standardized protocol for measurement methods and refer-
ence values for sperm parameters (464–467). In the WHO
2010 manual, the lower reference limit for sperm concen-
tration was decreased from 20 � 106/ml to 15 � 106/ml, the
value that had been in use since 1987. This value reflects the
fifth centile for fertile men (defined as time to pregnancy
�12 mo) and reflects the semen characteristics of recent
fathers. It is notable that these cut-off points are appreciably
below the value of 60 � 106/ml, considered to have been a
“normal” sperm count in the 1940s (153, 255). Further-
more, other studies have shown reduced monthly probabil-
ity of conception for sperm concentration below 40–50 �
106/ml (50, 147, 389). Bonde et al. (50) examined the
monthly probability of conception in relation to semen pa-
rameters in couples attempting pregnancy and found that
when sperm concentration was below 40 � 106/ml or the
number of motile sperm �70%, the monthly probability of
conception decreased. This is consistent with results from a
large network study of fertile and infertile couples which
found that semen samples with concentration below 48 �
106/ml, motility below 63%, and percent of sperm with
normal morphology �9% (using strict criteria methods)
were outside the fertile range (147). From an investigation
of fertile men, Slama et al. (389) detected decreasing prob-
ability of conception with sperm concentrations below 55

� 106/ml and a total sperm count below 145 mill. Despite
these population-level results, the ability of single semen
parameters to predict fecundity on an individual level is
limited, as was concluded by the United States National
Cooperative Medicine Network in a large multicenter study
comparing sperm parameters in 756 infertile and 696 fertile
men (147). This national study concluded that although
threshold values for sperm concentration, motility, and
morphology can be used to classify men as subfertile or
infertile, none of the parameters measured individually was
diagnostic of fertility (147).

Although a healthy mature man has tens of millions of
spermatozoa per ejaculate, it has been estimated that only 1
per million will succeed in contacting the egg within the
fallopian tube (100). If these estimates are confirmed, an
average semen sample with a total sperm count of �150
million, as currently often seen among young men in Den-
mark (189), might have as few as 150 spermatozoa capable
of fertilization.

6. Conclusion

Over the past 25 years, abundant literature has identified
important geographical differences in semen parameters be-
tween and within countries. While there is considerable
variability in trends in sperm counts over the past 20 years,
several recent studies report that 20–30% of young men
today have sperm concentration below 40 � 106/ml, which
is associated with reduced fecundity (50, 147, 389). We
therefore estimate that 20–30% of men in the examined
cohorts might be at risk of prolonged waiting time to preg-
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nancy if they want to become fathers, and 10–15% have a
sperm count so low that they might require fertility treat-
ment (see sect. III).

G. Sex Ratio

Sex ratio of offspring may act as in indicator of male repro-
ductive problems. For example, men who were exposed to
the pesticide DBCP at their workplace (137) and men who
were exposed to dioxin at the Seveso accident had an excess
of girls (278). However, several factors may influence sex
ratio.

It is generally assumed that �105 male births occur for each
100 female births leading to 51.5% of births being male
(324). The sex ratio is important as it might reflect impor-
tant demographic shifts as well as impact economic condi-

tions (143, 264). In the first half of the 20th century, the sex
ratio increased in most Western countries due to improved
obstetrical care which led to relatively more live births of
males. But while thought to be constant over time in the
absence of health advances, recent data suggest a decline of
the sex ratio in many Western countries (91).

An analysis from US birth data demonstrates a decline in
the sex ratio beginning around 1940 (91, 264; see FIGURES

12 and 13). Over that period of time, the proportion of
male births declined from 51.4 to 51.2%, or �2 fewer
males per 1,000 births. In Denmark, the percentage of male
births decreased from 51.5 in the 1950s to 51.3 in 1995,
while in the Netherlands it declined from 51.6 to 51.3 over
this same time period (283, 438). Canada also showed a
similar decline in recent decades from 51.5 to 51.3 from
1970 to 1990 (10). However, an examination of 29 coun-
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tries from a WHO database identified some countries where
the sex ratio seemed to increase over time including several
in southern Europe such as Italy and Spain (324). However,
while a universal decline in the sex ratio was not reported
for all countries, a majority (16 of the 29) did show a de-
cline, while six showed an increase and seven showed no
change. While certain regions and countries might not re-
flect the recent downward trend in sex ratio, for the remain-
der of the countries, this concerning index has been ex-
plored as a sentinel health indicator.

As data suggest a possible decline in male fertility over the
past half century, investigators have explored whether a
relationship exists between infertility and sex ratio. Hy-
pothesizing that infertile men might have an impaired abil-
ity to sire male heirs, Weijin and Olsen (453) found that
couples with a longer time to pregnancy had a lower sex
ratio (453). However, other investigations have cast doubt
on this relationship (105, 171, 180, 394). A Dutch group
found that the proportion of male births increases with a
longer time to pregnancy (394). As female influences are
thought to be a powerful mechanism for gender selection,
examining postgestational outcome such as live birth sex
might be inadequate to assess the role of the male contribu-
tion to the sex ratio. A US group examined the proportion
of Y bearing sperm and identified an inverse relationship
between the production of Y chromosome bearing sperm
and semen quality, suggesting an impaired ability for infer-
tile men to sire male heirs (104).

In addition to the fertility of the parents, the health of the
parents has also been examined as a factor that might im-
pact sex ratio. Diabetes, non-Hodgkin’s lymphoma, hepa-
titis B, and testicular cancer are among the diseases thought
to lower sex ratio (70, 171, 318, 357). The impact that
environmental exposure can have on sex ratio has
prompted concern regarding the recent declines in the sex
ratio in several countries. An explosion at a chemical plant
in Seveso, Italy in 1976 exposed the local population to high
levels of dioxin, a known endocrine disruptor. A subse-
quent generation of children sired by parents with high
exposure levels displayed a lowered sex ratio (278, 279).
Workers exposed to the gonadotoxic nematocide DBCP
demonstrated reduced sex ratios compared with children
born prior to paternal exposure (137, 336). Other expo-
sures including boron and those from aluminium manufac-
ture have also demonstrated decreases in the sex ratio or
sperm Y:X ratio (277, 359). These data demonstrating an
influence of chemical exposure on sex ratio has laid the
foundation for many to hypothesize that environmental ex-
posures might be the driver behind the declining sex ratio.

In addition to chemical exposure, environmental stressors
in the form of catastrophic events have also been shown to
alter the sex ratio. The Kobe earthquake, September 11
attack in New York, economic downturns, and war have all

been shown to lower the sex ratio (67, 68, 126, 482). The
authors speculated that alterations in semen quality or
spontaneous abortion might have contributed, although
the definitive etiology remains uncertain. While the pre-
conception and adult environment might play a role in
sex ratio, social factors might also impact on sex ratio.
Sex-selective abortion in some countries have increased
in prevalence based on availability of abortion and early
identification of the sex of a fetus (124, 178, 476). Such
practices might have a significant impact on the sex ratio
of an entire population (29).

III. INFERTILITY

Given the reported changes in male reproductive health, an
immediate question is whether they are associated with an
increased prevalence of infertility. This is a challenging
question to answer given the absence of population-based
monitoring data suitable for assessing temporal patterns of
infertility, and the methodological nuances associated with
measuring infertility as briefly noted below.

A. Definition

Infertility has been defined as the inability of a couple to
conceive after 1 yr of sexual intercourse without contracep-
tion (110). This broad definition does not reflect the con-
siderable heterogeneity of infertility, which comprises both
couples without and with prior pregnancies, or so-called
primary and secondary infertility, respectively. Approxi-
mately half of infertility with an identifiable diagnostic find-
ing is attributed to female factors (e.g., endocrine, tubal,
uterine, cervical, and oocyte factors) and another half to
male factors (e.g., poor spermatogenesis, cryptorchidism,
poor semen quality, cancer, genetic syndromes). Such diag-
nostic categorization will be dependent on clinical norms
and practices, the extent of diagnostic testing that couples
undergo, and the sensitivity/specificity of such testing. For
example, 66% of fertile couples undergoing standardized
infertility evaluations for research purposes were observed
to have one or more infertility factors (146). Another con-
sideration with regard to infertility terminology is the un-
certain percentage of couples that might have both male and
female factors identified, while many others will have un-
known or idiopathic infertility. Considerable misclassifica-
tion of diagnostic subtypes of infertility arises when based
on self-reported information (94).

Also, an unknown percentage of infertile couples will re-
solve their infertility either spontaneously or with medical
treatment, while others will have unresolved infertility. This
observation has prompted authors to define infertility as a
continuum of fecundity ending with an absolute inability to
conceive (145).
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B. Prevalence/Incidence of Infertility

One of the earliest prevalence estimates of infertility esti-
mated that 16% of couples in the United Kingdom were
affected (169) followed by estimates that varied by place
and time. For example, the prevalence of infertility ranged
from 8 to 12% in Asian and Latin American studies (458),
with similar ranges reported in parts of sub-Saharan Africa.
Specifically, prevalence was 9% in Gambia (406), although
20–30% in Nigeria (229, 315). An overall prevalence in
Europe was estimated to be 16%, ranging from a low of
10% in Southern Italy to a high of 24% in East Germany
(196). Prevalence varied from �15 to 33% in five popula-
tion-based samples (Denmark, Germany, Italy, Poland, and
Spain) of women aged 25–44 yr reporting for their first
pregnancy attempt (205). In a random sample of Scottish
women aged 31–50 yr, �19% reported having experienced
infertility with more primary than secondary infertility re-
ported (43). Most recently, prevalence in Canada was re-
ported to range from �12 to 16% when varying the as-
sumptions about factors associated with conception (62).
Geographical variation in prevalence is also observed
among developing countries, ranging from �4 to 17% in
25 population-based surveys comprising 172,413 women,
with lifetime infertility ranging from 12 to 26% (49). Of
note is the preponderance of prevalence data based on fe-
male rather than male reporting. A recent systematic review
revealed wide fluctuations in prevalence depending on def-
inition, choice of referent population, and specification of
numerators/denominators underscoring the inability to de-
rive a single prevalence estimate across studies (145). FIG-
URE 14 illustrates some of the considerations that are
needed when defining infertility (numerator) and selecting

the population at risk (denominator), which might affect
prevalence estimates. In addition, global prevalence of life-
time infertility has been reported to vary from 6.6% in
Norway (364) to 32.6% in the US (372).

These estimates of the prevalence of infertility were ob-
tained from cross-sectional surveys, but ideally incidence
data are needed. Such data must be derived from prospec-
tive cohort studies that recruit couples prior to or upon
becoming at risk for pregnancy, such as when discontinuing
contraception for purposes of becoming pregnant. Couples
are then followed daily through 12 menstrual cycles or
months at risk for pregnancy. Three such studies have been
conducted (59, 170, 480), while another four preconcep-
tion cohort studies have followed only female partners for
12 cycles or months (58, 109, 120, 418). Collectively, these
prospective cohort studies with preconception enrollment
of couples or women suggest that the incidence of infertility
ranges between 12 and 18%. Irrespective of study design, it
is important to keep in mind that human fertility is dynamic
in nature, as infertility does not necessarily imply sterility.
For example, while fecund couples have pregnancies result-
ing in births, many couples with fecundity impairments,
such as those experiencing pregnancy losses or 12-mo infer-
tility, will become pregnant and have births either with or
without medical assistance as illustrated in FIGURE 15.

Another approach for estimating the prevalence of infertil-
ity utilizes time-to-pregnancy (TTP) data usually obtained
from pregnant women or through record linkages or regis-
tries data. TTP is easily obtained from questionnaires ask-
ing how long the couple had regular unprotected inter-
course before pregnancy occurred and allows for the cate-
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gorization of couples not only with regard to infertility
(TTP �12 cycles/mo) but also in relation to conception
delay or so-called impaired fecundity (TTP �6 cycles/mo).
Reliance on retrospectively reported TTP requires some
caution with regard to interpretation, given its uncertain
validity that has only been empirically assessed in two stud-
ies using the gold standard of prospectively measured TTP.
Specifically, the validity of self-reported TTP was reported
to be good for shorter periods of recall (477), but poor for
longer periods of recall given notable bidirectional errors in
reporting (80). However, reliability of retrospectively re-
ported TTP has been reported to be good (182).

Recently, the current duration approach has been devel-
oped and offers a novel method for identifying women
currently at risk for pregnancy. This cross-sectional ap-
proach queries women (or men) regarding the time since
stopping contraception or attempting to become preg-
nant at the time of interview. This method allows for the
estimation of a TTP-like distribution that accounts for
left censoring (207). Applying this approach in France
using a household-based sampling framework yielded a
12-mo infertility prevalence of 24% and a 24-mo preva-
lence of 11% (390). Recently, the current duration ap-
proach was used to estimate infertility prevalence among
respondents in the 2002 National Survey of Family
Growth (NSFG) conducted in the US. Prevalence was
estimated to be 15.5% based on female reporting (416)
and 12.0% for male reporting (251).

C. Temporal Patterns of Infertility

It is exceedingly difficult with available data to accurately
estimate the temporal pattern of infertility as illustrated in a
recent systematic review (145). Doing so would require lon-
gitudinal assessments using similar methods that are re-
sponsive to the nuances underlying pregnancy intentions,
periods at risk, and other methodological issues including
sources of sampling biases. While several authors have es-
timated infertility prevalence in various countries for par-
ticular time periods as noted above, few attempts have been
undertaken to assess temporal patterns. Perhaps the closest

available “temporal” data are derived from the NSFG. This
cross-sectional survey was conducted at specific time peri-
ods (1982, 1988, 1995, 2002) until continual enrollment
began in 2006. The NSFG survey interviews a representa-
tive sample of US women aged 18–44 yr (and men com-
mencing in 2006) about many aspects of reproductive
health. Infertility is not directly queried but is derived from
respondents’ answers to a series of conditional questions on
relationship status, sexual activity, contraceptive use, and
pregnancy attempts within the past 12 mo. In 2002, this
construct estimated a US prevalence of 7.4% (72), which is
half the estimate (15.5%) for this same time period using
the current duration approach, as noted above. This might
be a function of the survey’s continued reliance on a con-
struct measure of infertility rather than direct querying of
men/women. Based on repeated cross-sectional NSFG data,
the 12-mo infertility prevalence for married women has
steadily declined in the US from 8.5% in 1982 to 6.0% in
2006–2010 (71); however, a growing percentage (41% in
2011) of US births are to unmarried women (262). We are
unaware of data on temporal patterns of infertility for other
geographical locations.

To our knowledge, there is no population-based monitor-
ing of infertility in any country. This critical data gap is in
the context of considerable reported variations in human
fecundability, as measured by TTP (176) or semen quality
(186, 409), and despite earlier calls for monitoring human
fecundity via surveys (179) or more purposeful research
initiatives inclusive of the couple (317).

Attempts to assess temporal patterns of human fecundity
include the following four initiatives presented in chrono-
logical order. First, temporal patterns of self-reported TTP,
defined as the number of years of involuntary childlessness,
were assessed for 832,000 primiparous women aged 20 yr
and older with births between 1983 and 2002 as identified
in the Swedish Medical Birth Registry (370). This unique
investigation accounted for two important sources of bias,
namely, truncation and age and calendar time at the initia-
tion of trying. Subfertility was estimated to have decreased
for more recent cohorts, although it is important to note
that the sampling framework comprised only fertile women
giving birth, which underrepresents women with impaired
fecundity who either cannot conceive or carry a pregnancy
to live birth. Another important consideration is the in-
creased awareness of the fertile window over this time pe-
riod and the availability of in-home tests aimed at timing
intercourse to maximize chances of conception or for iden-
tifying pregnancy, which were not as readily available in
earlier cohorts.

A second initiative assessed temporal patterns in the rates of
natural conceptions for 803,435 Danish women born be-
tween 1960 and 1984, allowing for an indirect assessment
of infertility (230). A gradual decline in both observed and
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FIGURE 15. Dynamic nature of fecundity and fertility.
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projected rates of natural conception was observed. Other
important observed trends included declining abortion
rates and a slight increase in the percentage of childless
women regardless of use of assisted technologies (14.5 to
15.6%). Another investigation assessed trends in childless-
ness among birth cohorts of males, which is unique in that
most research focuses on females. Specifically, 1,359,975
Danish men born between 1945 and 1980 were linked with
their children using national birth and ART registries (338).
The percentage of childless men at age 45 yr increased from
14.8 to 21.9%.

While infertility was not estimated specifically, investiga-
tors pooled five European databases to assess fertility time
trends for 8,532 combined pregnancies whose mothers
were aged 20–34 yr and for whom “valid” self-reported
TTP was available along with 715 contraception failures
occurring between 1953 and 1993 (181). An increasing
fertility trend was reported, and attributed to a male cohort
effect for TTP and contraception failure. While the authors
undertook several analyses, there are noteworthy limita-
tions that might impact on temporal patterns including re-
stricting pregnancies: 1) to those resulting in a live birth,
which systematically excludes women unable to conceive or
carry a pregnancy to birth, and 2) to the first trying attempt
rather than including all such attempts. This latter practice
assumes that the first pregnancy attempt is representative of
all subsequent trying attempts, which might or might not be
true (250).

D. Use of ART

Indirect information on trends in infertility might be ob-
tained from statistics on assisted reproduction. In Den-
mark, nationwide activities on ART are registered every
year. As seen from FIGURE 16, there has been a significant

increase in the use of ART during the past 13 years. While
the level of assisted reproduction might seem to have
levelled out in recent years, there has at the same time
been a 13% drop in the number of Danish women aged
25– 40 yr, which is the age range of the majority of
women seeking help to reproduce. Consequently, the
proportion of couples/women seeking treatment has con-
tinued to increase.

While it might appear that there has been a huge increase
in the usage of donor semen, it is important to note
several possible reasons for this increase. As a conse-
quence of legislative changes, treatment of lesbian and
single women was introduced during the time period,
thus increasing the number of women seeking this treat-
ment option. Furthermore, complete registration on the
number of treatments using donor sperm have only been
achieved in recent years.

It is important also to recognize that data on birth cohorts
always include children conceived through assisted repro-
duction, and this could mask the “real” fertility potential in
a population.

IV. ROLE OF GENETIC BACKGROUND FOR
THE RISK OF MALE REPRODUCTIVE
DISORDERS

It is clear that the quick pace of incidence trends of the
above reviewed disorders of male reproductive health is
consistent with the relatively recent changes in the envi-
ronment and lifestyle-related factors, rather than accu-
mulation of inherited genetic aberrations. However, the
available data demonstrate that there have been quite
striking geographical and ethnic differences in most of
these trends.
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A. Genetic Polymorphisms Explaining Ethnic
Differences

The most clear-cut evidence of ethnic differences in disease
incidence has been provided by epidemiological studies of
testicular cancer, which are briefly reviewed above. The
incidence of TGCC worldwide is by far greatest among
white people of northern European ancestry and lowest
among African men. These prevalence differences are not
primarily related to environment, as convincingly illus-
trated by ethnic differences among the populations in the
US (133, 269).

Men of African ancestry seem to be “protected” from tes-
ticular cancer, and possibly also have a lower incidence of
cryptorchidism. An explanation has been sought in several
studies. Because of the association of TGCC with inborn
disorders, especially those linked to insufficient masculin-
ization, including cryptorchidism, it was hypothesized that
the steroid hormone levels might differ between black and
white people. Although no marked differences have been
noted in serum testosterone between white and black men,
there might be some differences in women. Significantly
higher (by 48%) levels of serum testosterone were identified
in black women during the first trimester of pregnancy
(164). These data are uncertain, because the studied groups
were very small, and the genetic polymorphisms responsible
for the observed differences have not been identified.

It is known that androgen action is modulated to a small
extent by the number of trinucleotide CAG or GGC/GGN
repeats in exon 1 of the androgen receptor (AR) gene. A
highly expanded AR(CAG)�40 is a cause of a serious neu-
rodegenerative disorder (spinal bulbar muscular atrophy,
or Kennedy syndrome), which is also associated with pro-
gressive failure of spermatogenesis and with hypogonadism
(226). A subtle decrease in the transactivation of the AR has
been reported in men with either long or very short (CAG)n
stretches (303). Conversely, both long and short stretches
(CAG)n repeats have been associated with infertility (304),
but many other studies did not show any such association
(457). On the other hand, the AR polymorphisms might
modulate sperm production in normal men (448). The cur-
rent consensus based on meta-analytic studies is that longer
CAG repeats are associated with male subfertility at a co-
hort level and are considered a contributing factor rather
than a cause of infertility (93, 304, 434). In general, no
significant associations of the AR(CAG)n repeats polymor-
phism and testicular cancer have been detected among
white men (346), but some weak associations with some
TGCC histologies or with certain combinations of the re-
peats have been reported (93, 128, 135). Shorter AR-
(CAG)n repeats have also been associated with cryptorchid-
ism in white males (92). Taken together, these data show
that the AR polymorphisms might have a minor modulating
effect on testis function and possibly also on the ethnic
variability in the risk of reproductive disorders, but cannot

explain the huge difference in the TGCC incidence between
blacks and whites.

However, GWAS of testicular cancer performed in recent
years in multi-ethnic populations have identified a robust
genetic risk factor, a polymorphic SNP rs995030 in the
KITLG locus (203, 349). The frequency of the KITLG risk
allele differs significantly between populations, with a siz-
able majority of Caucasians (81%) carrying it, compared
with �25% in African populations (203, 240). This skewed
distribution of the polymorphic alleles makes biological
sense, as, in addition to germ cell migration and survival,
the KITLG/KIT signaling pathway is involved in differenti-
ation of melanocytes and regulation of skin pigmentation;
hence, the KITLG has likely undergone positive selection in
the European population during adaptation to changed
light and temperature conditions (203).

B. Genetic Causes of Male Infertility

As far as the genetic risk for male subfertility or infertility is
concerned, it is clear that sex chromosome aneuploidy, del-
eterious gene mutations or copy number variations (CNV,
especially deletions) that negatively affect testis develop-
ment, germ cell development, or sperm maturation will
cause these phenotypes. Numerous genetic aberrations can
be mentioned here, including XXY, XX-male, deletions and
rearrangements of the Y-chromosome, mutations in SRY,
AR, CFTR, NR5A1, etc. A detailed description exceeds the
scope of this review, so the reader should consult recent
papers devoted specifically to genetics of male infertility
(28, 36, 166, 216, 245, 273). Some of the Y-chromosome
deletions often have significant impact on spermatogenesis,
but the phenotypes are variable depending on the copy
number, other rearrangements, or a constellation of inher-
ited common gene variants. Partial AZFc deletions (e.g.,
gr/gr), removing some but not all copies of DAZ, CDY, and
other coding and noncoding genes are a typical example
(245, 352, 366). Genome-wide CNV array studies using
modern versions of the comparative genomic hybridization
(CGH) technique began to uncover additional CNV linked
to male infertility (73, 217, 249, 403, 435 471). Interest-
ingly, a generally increased CNV burden seems to be asso-
ciated with male infertility (28, 216). Several such aberra-
tions, inculuding mutations within TEX11 gene, have been
mapped to the X-chromosome, which houses many germ
cell-specific genes, and in analogy to the Y contains palin-
dromic regions that facilitate rearrangements (73, 217,
471).

However, knowledge on more subtle regulation of human
spermatogenesis by genetic variability remains rather lim-
ited, and many single-gene studies based on educated guess,
including the above-summarized AR story, did not contrib-
ute much (434). One polymorphic pathway is a notable
exception: gene variants of FSHB and FSHR have been
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confirmed as biologically relevant by independently per-
formed robust studies (142). Two polymorphisms in this
pathway, FSHB �211G�T and FSHR 2039A�G, have
been shown to be associated with serum FSH and testicular
volume, and the carriers of a combination of the two less
favorable genotypes had a greater risk of oligozoospermia
(433).

After the appearance of the genome-wide SNP microarrays,
several GWA studies and numerous replication attempts
assessing single SNPs failed to associate such variants with
male infertility. Most of those studies have given inconclu-
sive results due to heterogeneity of patient phenotypes and
often insufficient power of studies. It required much larger
study populations such as of azoospermic men from China
(168, 474) or selecting a genetically related cohort (214) to
identify a quite modest number of informative SNPs, which
are still of limited clinical relevance (28). To what extent
these common variants contribute to modulation of repro-
ductive function remains to be established.

In summary, it is clear that the genetic variability between
ethnically different populations, e.g., Africans versus Euro-
peans, has a profound effect on the risk of reproductive
disorders, which is well documented for TGCC. However,
genetic background cannot explain temporary trends
within the same ethnic group, which are predominantly
environmentally determined. Importantly, common genetic
variants can modulate the individual susceptibility within
the same population, because not all exposed men develop
the same phenotypes. Another important aspect is that in-
herited traits are not always genetic. Fascinating new re-
search provides evidence that the predominant way of indi-
vidual adaptation to the changing environment is likely epi-
genetic, as summarized below.

V. ENVIRONMENTAL MODULATION OF
EPIGENETIC GERM CELL PROFILE: A
POSSIBLE EXPLANATION FOR SOME
OF THE REPRODUCTIVE HEALTH
TRENDS?

Epigenetic processes affect gene expression without chang-
ing the gene sequence. There are numerous mechanisms of
epigenetic regulation, and only those best described in the
literature with regard to reproduction are mentioned here.
Since the topic of this review is human fertility, the empha-
sis is on germ cells, which are remarkably different from the
somatic cells in terms of epigenetic regulation during devel-
opment and maturation.

A. DNA Methylation in Germ Cells

The best known and probably most common mechanism of
gene silencing is DNA methylation, which involves direct

alteration of DNA by methylation of cytosine/CG dinucle-
otides. This process is fundamental for developmental pro-
gramming and cell differentiation and is best known from
parental imprinting and X-chromosome inactivation. DNA
methylation is partly determined by DNA sequence because
of the nonrandom localization of the CpG islands, which
are especially frequent in promoter regions or repetitive
sequences (376).

Studies in mice demonstrated that soon after fertilization
the genome is demethylated to remove paternal marks, and
the process of erasure of DNA methylation is repeated again
only in primordial germ cells (PGC) (152). The demethyl-
ation process requires a set of specialized enzymes (e.g.,
APOBEC1, TETs) and the base excision repair proteins
(MBD4, APEX1, PARP1) (152, 198). Subsequently, the ge-
nome is progressively remethylated according to the pre-
programmed pattern, including restoration of the imprint-
ing. In human testes, this remethylation process begins
when fetal gonocytes gradually mature to prespermatogo-
nia (136, 456). In pathological situations, where the gono-
cytes fail to mature and become pre-GCNIS cells due to
gonadal dysgenesis and TDS (described earlier in this re-
view), the genome remains essentially completely demeth-
ylated (12, 306, 456), suggesting the maintenance of this
status might be an active process inherent to germ cells
(220), similar to the one described in mice. In normal male
germ cells, the DNA remethylation process continues and is
considered final in spermatocytes just before they enter mei-
osis (312). The remethylation of DNA requires both main-
tenance and de novo DNA methyltransferases (DNMTs).
Inactivation of these genes in mice causes disturbance of
maternal and paternal imprinting, loss of spermatogonia,
and meiotic catastrophe (51, 202, 225).

B. Changes in DNA Methylation in TGCC

The regulation of the DNA methylation process in human
germ cells has not yet been well described, and even less
information is available regarding what causes disturbances
of this process. We know, however, what happens if germ
cells turn malignant, but interestingly, different types of
TGCC show strikingly different patterns of genome meth-
ylation (reviewed in Ref. 221). Classical seminoma, which
resembles GCNIS, is also characterized by low DNA meth-
ylation, whereas the genome of non-seminomas is methyl-
ated in a nonrandom manner: highly methylated at Alu
repeats, but hypomethylated at LINE1 transposons and im-
printed genes, likely due to the secondary genomic changes
and vast reprogramming (12, 306, 393, 436, 456). In con-
trast, spermatocytic tumor, a rare TGCC predominantly of
older men that originates from clonally expanding mature
spermatogonia with gain-of-function mutations (139), is
characterized by completely chaotic and dysregulated DNA
methylation (219).

SKAKKEBAEK ET AL.

78 Physiol Rev • VOL 96 • JANUARY 2016 • www.prv.org



Numerous studies have documented abnormal DNA meth-
ylation in spermatozoa of patients with infertility, espe-
cially oligo-astheno-zoospermia, but also in some forms of
idiopathic azoospermia (reviewed in Ref. 48). These meth-
ylation aberrations might occur both at imprinted sites, e.g.,
IGF2/H19 and promoter regions as well as genome-wide,
so it is beyond doubt that the system is essential for sperm
function and might fail at many different points. Whether
these abnormalities are genetically determined, acquired
during development, or caused by environmental factors
specifically disturbing spermiogenesis remains to be estab-
lished in most cases.

C. Does Environment Affect DNA
Methylation?

A direct effect of some environmental factors on DNA
methylation has been demonstrated in experimental studies
in animal models. Human data are scarce, especially con-
cerning the prenatal development. In a recent study of hu-
man fetal tissues matched for maternal smoking, changes of
DNA methylation at the imprinted gene IGF2 and the glu-
cocorticoid receptor gene (GR/NR3C1) were found, likely
due to alterations in methyl donor availability and changes
in 1-carbon metabolism (98). This is of relevance in view of
clinical studies reporting an increased risk of cryptorchid-
ism (see sect. IIB), changes in reproductive hormones, ear-
lier puberty, and impaired semen quality in the males ex-
posed in utero to maternal smoking (350).

D. Histone Modifications

Another main mechanism of gene expression regulation in-
volves posttranslational modifications of histones, which
are proteins building the cell’s chromatin. The histone tails
can be modified by acetylation, methylation, phosphoryla-
tion, ubiquitination, crotonylation, and other chemical ad-
ditions, which change the chromatin structure allowing or
prohibiting binding of transcription factors to DNA and
thus regulating gene transcription (365). Some of these
modifications, such as crotonylation, seem to be specific for
haploid germ cells and preferentially positioned in nonran-
dom chromosomal regions, e.g., sex chromosomes (286).
These modifications require the action of specific enzymes,
such as histone acetyltransferases (HAT), histone deacety-
lases (HDAC), histone methyl-transferases (HMT), or his-
tone demethylases (HDM), with the latter encoded by a
family of Jumonji genes, expression of which is develop-
mentally regulated and differs among cell types (121).
Again, the current knowledge on the dynamics of histone
modifications in germ cells is mainly based on rodent stud-
ies (151), with few human studies exploring this field. Only
a few studies, which analyzed histone modifications in GC-
NIS cells and TGCC, also examined a few samples of nor-
mal fetal testes, and found some differences between mice

and men, including high levels of H2A.Z, HP1�, H3K9ac,
and H4/H2AR3me2, but low levels of H3K9me2/3 and
H3K27me3 (12, 35, 99). The pattern observed in GCNIS
cells was characterized by an open structure of chromatin,
with high levels of H2A.Z, H3K4me1/2/3, H3K9ac,
H3K27ac, and H4/H2AR3me2, and the absence of the re-
strictive H3K9me2 and H3K27me3, but surprisingly high
levels of H3K9me3 (12, 35). Combined with a very low
DNA methylation level, the absence of DNA damage re-
sponse and a high proliferation rate, this “permissive” chro-
matin of GCNIS cells may render them vulnerable to exog-
enous factors, possibly causing chromosomal instability
and secondary genomic aberrations (35, 221).

E. Sperm Protamination

A mechanism specific for haploid germ cells and spermio-
genesis is the gradual exchange of histones by protamines,
P1 and P2, in preparation for DNA compaction and inac-
tivation in late spermatids. This process is not complete,
and a fraction of the compacted chromatin in human sper-
matozoa retains classical histones. These low-protaminated
foci are predominantly associated with genome regions
with regulatory functions essential for the early develop-
ment of the embryo (25, 156). Despite a very marked com-
paction of chromatin in spermatozoa, the regions that re-
tain histones contain many active RNAs, including prota-
mine transcripts, but also various small RNAs (see below),
which are thought to play a role immediately after fertiliza-
tion (227). Dysregulation of the histone-protamine transi-
tion, resulting in increased retention of protamine tran-
scripts (23), low protamination, or an abnormal P1/P2 ratio
in sperm, has been described in patients with infertility.
Abnormalities of sperm transcriptome (129) and histone
retention (155) have also been detected in sperm of infertile
men. Whether these abnormalities of sperm protamination
in subfertile men are caused by genetic or environmental
factors requires more research. So far, only cigarette smok-
ing has been implicated in one study (472).

F. Role of Noncoding RNAs

A previously unknown mechanism of epigenetic regulation
that has emerged more recently is the direct inactivation of
transcripts by small noncoding RNAs (sncRNAs), compris-
ing microRNA (miRNA), PIWI-interacting RNA (piRNA),
endogenous small interfering RNA (endo-siRNA), circular
RNA (circRNA), and others. piRNAs are of special rele-
vance in the field of male reproduction, because this well-
conserved class of RNA is preferentially present in germ
cells (236, 470), and although piRNAs have been detected
both in male and female germlines, in mammals they seem
to be active mainly in testes and during spermatogenesis.
Their function has not been completely elucidated, but it is
thought that piRNAs together with PIWI and other similar
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proteins (Mili/Miwi etc) evolved to silence transposon se-
quences in germ cells (24, 437) and might also be involved
in parental imprinting. Mouse knockout models have re-
vealed that small RNAs and the associated proteins are
essential for spermatogenesis, but human studies have only
recently begun. One study reported changes in the expres-
sion profile of PIWIL2, PIWIL4, MOV10L1, and TDRD9
in testes of cryptorchid boys (149), but these data need to be
confirmed in additional studies. In addition to piRNAs,
male germ cells express yet another small RNA type of
unclear biological significance, endo-siRNAs, which re-
quire DICER1 but no DROSHA/DGCR8, hence they differ
from miRNAs (395, 478).

More robust human data exist on miRNAs, which are par-
ticularly abundant in mammalian testes and germ cells
(470). Mature miRNAs are incorporated into RNA-silenc-
ing complexes, called RISC, which direct silencing of mes-
senger RNAs (mRNAs). It has been hypothesized that miR-
NAs can act as a novel class of hormones, because they are
often enriched in exosomes which are transported in circu-
lation to remote organs, and this mechanism might be par-
ticularly active in pathological conditions, such as cancer
(475). Indeed, very important recent studies profiled miR-
NAs in patients with TGCC revealed the presence of em-
bryonic miRNAs and provided evidence that serum miR-
NAs are very specific and robust markers for this malig-
nancy regardless of the age of the patient harboring the
tumor (294, 322, 355, 449). Importantly, these miRNA are
already present in the preinvasive GCNIS cells, thus open-
ing possibilities of an early diagnosis of this disease (311).
Specific miRNAS are enriched in mammalian testes (358),
so an important role for miRNAs in regulation of human
spermatogenesis is expected, but the data so far are scarce.
Several human studies have shown that the miRNA profile
changes in infertile men, depending on the testis histopa-
thology, especially the presence of germ cells in seminifer-
ous tubules (2, 85, 235, 431), but more studies are needed
to dissect the role of these miRNAs and the target tran-
scripts.

Interestingly, recent mouse studies suggest that the miRNA
profile of sperm can be affected by paternal stress or
trauma, even if sustained early in life, and these changes
might be transmitted to the next generation (127, 362).

G. Transgenerational Environmental Effects

Since it became evident that some epigenetic modifications
present in sperm are being transferred to the embryo during
conception, and some of these changes are not erased, a
long-suspected phenomenon of nongenomic inheritance
has become a hot topic of intense research. Transgenera-
tional effects of some environmental exposures or lifestyle
habits have been observed in humans. For example, a lower
incidence of heart disease and obesity was observed among

grandsons of men who experienced famine in childhood
(197). These observations have been confirmed and ex-
tended in transgenerational animal studies. The field is,
however, not without controversy, because some of
ground-breaking studies that reported such effects in the
second generation of rats treated with the commonly used
pesticides vinclozolin or metoxychlor (21, 22) were chal-
lenged with lack of reproducibility and other problems,
which had to be clarified in an erratum, and even required
withdrawal of one paper. However, since then, the group
has produced very robust data confirming the transgenera-
tional effects on male reproduction (sperm epigenome) and
obesity of several endocrine disrupters used as pesticides or
components of plastics, including DDT, metoxychlor, bis-
phenol A (BPA), and other compounds (78, 259, 260, 388).
If these important data can be extrapolated to humans,
some of the currently observed trends in male reproductive
health might be explained by exposures to chemicals in
previous generations.

In conclusion, the evidence is growing that numerous endo-
crine disrupters and probably other lifestyle-related factors,
such as smoking, and possibly also diet and stress, are able
to exert a direct effect on the human epigenome, both in
utero and in adulthood, with germ cells apparently among
the most sensitive cells. These effects might be aggravated
by the existence of genetic variants predisposing to less
optimal function of some endocrine pathways, e.g., FSHR/
FSHB or AR polymorphisms, which might result in pathol-
ogy, including germ cell cancer and reduced semen quality.

VI. POSSIBLE ROLE OF MALE
REPRODUCTIVE DISORDERS IN
DECREASING PREGNANCY RATES

The ultimate end point of normal male reproductive func-
tion is conception and delivery of a normal child without
use of assisted reproductive techniques. As seen from FIG-
URE 17, there has been a remarkable decline in fertility rates
in most parts of the world during the past 50–60 years,
although African and some Asian and South American
countries and Mexico still have TFR substantially above
replacement level.

A decline in TFR is also noticeable in recently industrialized
developing countries such as Brazil and Chile. These
changes can be due to changes in social and economic fac-
tors, well described by demographers in their studies on the
transition from high-fertility to low-fertility societies. Sev-
eral countries have had public health policies encouraging
couples to use contraception (419), although only China
has had a one-child policy (122, 476). However, the early
period of the declining TFR started long before the intro-
duction of the pill, which occurred in the late 1960s. In
some European countries such as Denmark, the drop in
TFR even started 100 years ago (FIGURE 2).
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There is no doubt that socioeconomic factors are important
for fertility rates in modern industrialized countries (254).
However, it is a crucial question whether they can fully
explain the current fertility rates, which in many countries

have constantly been below replacement level for 30–40
years (FIGURE 17). Importantly, the decline of TFR does not
seem to be caused by increasing rates of induced abortions
during the past 40 years. On the contrary, a decline in

Canada
Mexico
USA
Replacement level

Argentina
Bolivia
Brazil
Chile
Colombia
Ecuador
Paraguay
Peru
Uruguay
Venezuela
Replacement level

0

1

2

3

4

5

6

7

8
To

ta
l F

er
til

ity
 R

at
e 

(p
er

 w
om

an
)

 

North America 

0

1

2

3

4

5

6

7

8

To
ta

l F
er

til
ity

 R
at

e 
(p

er
 w

om
an

)

 

South America  

0

1

2

3

4

5

6

7

8

9

To
ta

l F
er

til
ity

 R
at

e 
(p

er
 w

om
an

)
 

Africa

Congo, Dem. Rep.
Egypt
Ethiopia
Libya
Morocco
Somalia
South Africa
Sudan
Zimbabwe
Replacement level

0

1

2

3

4

5

6

7

To
ta

l F
er

til
ity

 R
at

e 
(p

er
 w

om
an

)
 China

Hong Kong
India
Indonesia
Japan
Korea, Rep.
Pakistan
Singapore
Sri Lanka
Turkey
Replacement level

0

0.5

1

1.5

2

2.5

3

3.5

To
ta

l F
er

til
ity

 R
at

e 
(p

er
 w

om
an

)
 Denmark

Finland
France
Germany
Greece
Netherlands
Norway
Portugal
Spain
Sweden
United Kingdom
Replacement level

Europe 

Asia 

19
60

19
65

19
70

19
75

19
80

19
85

19
90

19
95

20
00

20
05

20
10

19
60

19
65

19
70

19
75

19
80

19
85

19
90

19
95

20
00

20
05

20
10

19
60

19
65

19
70

19
75

19
80

19
85

19
90

19
95

20
00

20
05

20
10

19
60

19
65

19
70

19
75 19

80
19

85
19

90
19

95
20

00
20

05
20

10

19
60

19
65

19
70

19
75

19
80

19
85

19
90

19
95

20
00

20
05

20
10

FIGURE 17. Fertility rates, 1960–2013, across North America, South America, Africa, Asia, and Europe. From
the World Bank: http://databank.worldbank.org/data/views/variableselection/selectvariables.aspx?
source�world-development-indicators.
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abortion rates has been noticed for decades in countries
where legal abortions are registered (82) (see FIGURE 18).

Thus we seem to be witnessing a true trend with lower
pregnancy rates (82). Interestingly, in a study based on the
entire Danish population, we found a significant birth co-
hort effect in the trend in pregnancy rates: women born in
1970 had lower rates of pregnancies (including both births
and abortions) than those born in 1960 (177, 230). We also
found a birth cohort trend in childlessness: Danish men
born in 1960 were significantly more often childless than

those born in 1945 (22 and 15%, respectively) (338). It has
been speculated that increasing age of women at first preg-
nancy could explain the decreasing fertility rate. However,
data from Statistics Denmark clearly show that the average
age of delivering women was in fact higher in 1901 than
today (FIGURE 19; Blomberg Jensen et al., unpublished
data).

A crucial question is whether reduced fecundity plays a role
for the lower number of pregnancies in the more recently
born cohorts. As reviewed above, recent studies have shown
clear adverse trends in several aspects of male reproductive
health, including an increase in the incidence of TGCC
(231, 269) and lower and decreasing serum testosterone
levels (15, 329, 427). Also, the incidence of congenital gen-
ital abnormalities have become more common (83, 258),
and semen quality has deteriorated in many countries (30,
64, 363). Thus there is substantial evidence that a signifi-
cant proportion of young men from Europe (13), Japan,
and the US (212) have semen quality compatible with some
degree of subfertility or even infertility. Fortunately, the
reproductive capacity of normal, healthy men is very high,
as normal semen specimens contain excesses of sperm.
However, the evidence presented above suggests that semen
quality of a significant proportion of young men in devel-
oped countries might be at or below a tipping point, where
fecundity might in fact be affected (17). The situation might
not yet lead to widespread infertility as moderately lower
fecundity might just lead to longer waiting time to preg-
nancy and not be affecting family sizes of modern couples
(391), most of whom only wish for two or three children.
However, moderately lower fecundity might still result in a
lower chance of unplanned pregnancies among couples in
the general population and thereby influence pregnancy
rate. Theoretically, this might have a significant effect on
TFR, as unplanned (but still accepted) pregnancies without
abortion occur very often (291). However, severely reduced
male fecundity due to poor semen quality might cause “clin-
ical” infertility necessitating ART, particularly if the female
partner is also subfertile, for example, due to age.
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Unfortunately, as discussed above, there are big gaps in our
knowledge concerning trends and extent of human infertility.
In addition, it is often difficult or impossible to elucidate
whether a female or a male factor is the main problem of an
infertile couple. Quite often combined female and male prob-
lems exist. However, the reported decrease in semen quality in
some countries and widespread poor semen quality reported
from other countries combined with increasing use of intracy-
toplasmatic sperm injection (ICSI), which is particularly useful
in cases of poor semen quality, are in line with the assumption
that male factor infertility has become more frequent.

In Denmark, �8% of all children are now born after ART,
indicating that infertility has become a major health issue.
As seen from FIGURE 20, the ART activity has for several
years contributed significantly to the total number of chil-
dren born in Denmark.

VII. AFTERWORD: RESEARCH
CHALLENGES

Reproductive health is fundamental for a society and its cul-
ture. Both high and low fertility rates can be problematic for
economy, social structures, and health. Overpopulation has
for several decades been considered a global threat, and World
Health Organization and other international bodies have fo-
cussed on contraceptive programs worldwide (96) and fertility
rates are still high in several parts of the world (FIGURE 17).
However, as illustrated above (463), we are now seeing clear
downward trends towards TFR being persistently below re-
placement level, not only in the “old” industrialised countries
(FIGURES 17 AND 18), but also newly industrialized societies
like Brazil and Chile have below-replacement birth rates. And
these shifts in fertility occur despite increasing use of ART.
Hitherto, low fertility has caught public attention mainly be-
cause of the economic and social effects, including decreasing
work force and increased economic burden that comes from

care of relatively more elderly people (450). In contrast, re-
markably little attention has been given to the possibility that
decreasing fertility rates could represent a public health prob-
lem due to widespread decreased fertility among couples in
modern societies (112).

The epidemiology of infertility continues to be an under-
studied end point despite increasing evidence that it has
implications for health and disease across the lifespan and,
possibly, generations. A longer TTP, or requiring more than
12 mo for conception, has been associated with a higher
risk of adverse pregnancy outcomes (276, 343) and gravid
diseases (37). Infertility is a reported risk factor for both
ovarian and testicular cancer (33, 305) among other later
onset adult diseases. Despite the importance of infertility
for human health, few risk factors have been identified
other than partners’ ages. While many socio-demographic
or lifestyle factors have been associated with infertility,
much of the available data rely on retrospectively measured
TTP and exposure data. The few prospective cohort studies
conducted to date underscore the absence of longitudinal
data for this important outcome, with even fewer data on
risk factors for diagnostic subtypes of infertility (60). Para-
digms for further study of human fecundity, its impair-
ments, and health across the lifespans or generations have
been advanced and might help guide the synthesis of avail-
able data and the design of future work to fill critical data
gaps (57, 387). To do so will require standardized method-
ologies and surveillance, as recently called for by the US
National Public Health Action Plan for the Detection, Pre-
vention, and Management of Infertility (69).

If indeed poor reproductive health plays a role for the de-
clining pregnancy trends, we might not see any upward
trends in fertility for the foreseeable future, as the popula-
tions of women of reproductive ages and future generations
of children will undoubtedly decrease substantially in the
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FIGURE 20. Total number of births in Den-
mark, 1940–2012 (blue curve), and total
number of births minus births after ART,
2003–2012 (red curve). Note that the num-
bers of births conceived without the use of
ART in 2012 were similar to the low point
reached in 1983, before ART was introduced.
From Statistics Denmark and The Danish Fer-
tility Society: http://www.statistikbanken.
dk/statbank5a/default.asp?w�1600 and
http://www.fertilitetsselskab.dk.
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coming years, considering that the current cohorts of chil-
dren below 18 years are substantially smaller than a gener-
ation ago. As a matter of fact, in Demark where the average
TFR has been �1.7 for 40 years, the population of women
in reproductive age already seems to have declined by 20%
(FIGURE 21), although the population as a whole has not
declined, due to the fact that people live longer and the
number of immigrants has increased. In countries with sig-
nificantly lower TFR like Japan, a decrease in the total
population is already visible and prone to further decreases
in the years to come (314).

A. Pertinent Research Needs

The persistently extremely low fertility rates we have described
for European and some Asian countries call for strategic re-
search initiatives focusing on the role of both female and male
infertility factors. In this review we have limited ourselves to
male reproductive problems. Our analysis of these male disor-
ders points to several pertinent research needs.

We need to clarify to what extent the lower pregnancy rates
reported from many countries during the past decades are due
to socio-economic factors (availability of more efficient con-
traceptive methods, delayed family initiation, less frequent
sex, less desire/opportunity to raise children, etc.) or to biolog-
ical causes resulting in a generally lower fecundity of the pop-
ulation. This might involve collaboration between researchers
in reproductive medicine and social sciences to:

• Establish methods to monitor trends in fertility in a
meaningful way, including methods to distinguish be-
tween voluntary and nonvoluntary childlessness. This
could include, for example, monitoring of frequency of
unintended pregnancies or changes in sex ratios as po-
tential surrogates for fecundity in analyses of fertility.

• Develop epidemiological tools to distinguish between
the role of male and female factors for infertility.

• Initiate national prospective surveillance programs
on infertility and other reproductive health prob-
lems.

Gender differences in reproductive health issues need to be
explored, including the role of gender differences in regula-
tion of sex development:

• Can a sex difference with regard to effects of environ-
mental exposures on the reproductive system explain
that there are many more reports on environmental
effects on the male than the female reproductive sys-
tem? Is this biology or is there simply a publication
bias?

• Is it possible that current exposures to industrial
chemicals have stronger effects on males than on
females due to anti-androgenic and estrogenic prop-
erties of the chemicals?

• What is the role of prenatal and childhood factors
for male infertility and decreased testosterone levels
in adulthood?

• Why do healthy humans in general have poorer sper-
matogenesis than most other mammals?

• Why is testicular cancer increasing all over the world
and are the trends inversely related to trends in
fecundity?

We need a better understanding of gene-environment inter-
actions to disentangle the environmental impact on repro-
ductive health from biological variation:

• What is the role of genetic polymorphisms for the ra-
cial differences in male reproductive health, such as the
relatively high incidences of testicular cancer among
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Caucasians and low incidences among Africans and
Asians?

• What is the contribution of environment versus genetic
polymorphisms for congenital disorders of male repro-
ductive tract, including cryptorchidism and hypospa-
dias?

• What is the role of epigenetics for male reproductive
disorders and male infertility?

This long list of questions, which is far from complete,
illustrates our ignorance regarding several important as-
pects of biology and pathophysiology related to human re-
production. A reason why the lack of focus on research in
reproductive biology in countries with low fertility has per-
sisted for decades might be the fact that effects of low fer-
tility rates in the beginning are silent. Paradoxically, the
total number of people might still be increasing for a couple
of decades in spite of birth rates below replacement level,
because elderly people who now live longer more than com-
pensate for several years for the fewer children. Therefore,
large-scale population effects will not be manifest until
many years later. In addition, immigration might to some
extent compensate for the fewer births. Therefore, people
might see the current demographic development as some-
thing that can relatively easily be managed by socioeco-
nomic initiatives. This might also have been the case if low
fertility rates would persist for only a couple of decades.
However, the current trends we see with regard to Europe,
Japan, and Singapore do not suggest any change in fertility
rate in the foreseeable future. On the contrary, it seems a
more likely scenario that fertility rates significantly below
replacement level have become “chronic” in those areas of
the world, where they have virtually been unchanged for
more than a generation. If they persist at the current level,
our grandchildren and their children will face a different
world.
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